""" Model Evaluation Script for Troviku-1.1 Comprehensive evaluation suite for testing the model's performance on various coding benchmarks and tasks. """ import json import time from typing import List, Dict, Any, Optional, Tuple from dataclasses import dataclass, asdict from collections import defaultdict import statistics @dataclass class EvaluationResult: """Result from a single evaluation.""" task_id: str task_type: str language: str passed: bool score: float execution_time: float error_message: Optional[str] = None def to_dict(self) -> Dict[str, Any]: return asdict(self) @dataclass class BenchmarkResults: """Aggregated benchmark results.""" benchmark_name: str total_tasks: int passed_tasks: int failed_tasks: int average_score: float pass_rate: float average_execution_time: float results_by_language: Dict[str, Dict[str, float]] def to_dict(self) -> Dict[str, Any]: return asdict(self) class CodeEvaluator: """ Evaluator for Troviku-1.1 model performance. Runs various benchmarks and coding tasks to assess model capabilities. """ def __init__(self, api_key: str, model: str = "OpenTrouter/Troviku-1.1"): """ Initialize the evaluator. Args: api_key: OpenTrouter API key model: Model identifier to evaluate """ from troviku_client import TrovikuClient self.client = TrovikuClient(api_key=api_key, model=model) self.results: List[EvaluationResult] = [] def evaluate_humaneval(self, problems: List[Dict[str, Any]]) -> BenchmarkResults: """ Evaluate on HumanEval benchmark. Args: problems: List of HumanEval problems Returns: BenchmarkResults with aggregated scores """ print("Evaluating HumanEval benchmark...") for problem in problems: task_id = problem['task_id'] prompt = problem['prompt'] test_cases = problem['test'] try: start_time = time.time() response = self.client.generate(prompt, language="python") execution_time = time.time() - start_time # Execute test cases passed, error = self._execute_tests(response.code, test_cases) result = EvaluationResult( task_id=task_id, task_type="code_generation", language="python", passed=passed, score=1.0 if passed else 0.0, execution_time=execution_time, error_message=error ) self.results.append(result) print(f" {task_id}: {'PASS' if passed else 'FAIL'}") except Exception as e: print(f" {task_id}: ERROR - {str(e)}") result = EvaluationResult( task_id=task_id, task_type="code_generation", language="python", passed=False, score=0.0, execution_time=0.0, error_message=str(e) ) self.results.append(result) return self._aggregate_results("HumanEval") def evaluate_mbpp(self, problems: List[Dict[str, Any]]) -> BenchmarkResults: """ Evaluate on MBPP (Mostly Basic Python Problems) benchmark. Args: problems: List of MBPP problems Returns: BenchmarkResults with aggregated scores """ print("Evaluating MBPP benchmark...") for problem in problems: task_id = str(problem['task_id']) prompt = problem['text'] test_cases = problem['test_list'] try: start_time = time.time() response = self.client.generate(prompt, language="python") execution_time = time.time() - start_time passed, error = self._execute_tests(response.code, test_cases) result = EvaluationResult( task_id=task_id, task_type="code_generation", language="python", passed=passed, score=1.0 if passed else 0.0, execution_time=execution_time, error_message=error ) self.results.append(result) print(f" Task {task_id}: {'PASS' if passed else 'FAIL'}") except Exception as e: print(f" Task {task_id}: ERROR - {str(e)}") return self._aggregate_results("MBPP") def evaluate_code_translation( self, test_cases: List[Dict[str, Any]] ) -> BenchmarkResults: """ Evaluate code translation between languages. Args: test_cases: List of translation test cases Returns: BenchmarkResults with translation accuracy """ print("Evaluating code translation...") for test_case in test_cases: task_id = test_case['id'] source_code = test_case['source_code'] source_lang = test_case['source_language'] target_lang = test_case['target_language'] expected_behavior = test_case.get('expected_behavior') try: start_time = time.time() response = self.client.translate( code=source_code, source_language=source_lang, target_language=target_lang ) execution_time = time.time() - start_time # Validate translation (simplified - would need actual execution) score = self._validate_translation( response.code, target_lang, expected_behavior ) result = EvaluationResult( task_id=task_id, task_type="code_translation", language=f"{source_lang}_to_{target_lang}", passed=score >= 0.8, score=score, execution_time=execution_time ) self.results.append(result) print(f" {task_id}: Score {score:.2f}") except Exception as e: print(f" {task_id}: ERROR - {str(e)}") return self._aggregate_results("Code Translation") def evaluate_code_explanation( self, test_cases: List[Dict[str, Any]] ) -> BenchmarkResults: """ Evaluate code explanation quality. Args: test_cases: List of explanation test cases Returns: BenchmarkResults with explanation scores """ print("Evaluating code explanation...") for test_case in test_cases: task_id = test_case['id'] code = test_case['code'] language = test_case['language'] key_concepts = test_case.get('key_concepts', []) try: start_time = time.time() explanation = self.client.explain(code, language) execution_time = time.time() - start_time # Score explanation based on coverage of key concepts score = self._score_explanation(explanation, key_concepts) result = EvaluationResult( task_id=task_id, task_type="code_explanation", language=language, passed=score >= 0.7, score=score, execution_time=execution_time ) self.results.append(result) print(f" {task_id}: Score {score:.2f}") except Exception as e: print(f" {task_id}: ERROR - {str(e)}") return self._aggregate_results("Code Explanation") def evaluate_bug_detection( self, test_cases: List[Dict[str, Any]] ) -> BenchmarkResults: """ Evaluate bug detection and fixing capabilities. Args: test_cases: List of buggy code samples Returns: BenchmarkResults with bug fix success rate """ print("Evaluating bug detection and fixing...") for test_case in test_cases: task_id = test_case['id'] buggy_code = test_case['buggy_code'] error_message = test_case['error_message'] language = test_case['language'] tests = test_case.get('tests', []) try: start_time = time.time() response = self.client.debug(buggy_code, error_message, language) execution_time = time.time() - start_time # Test if fixed code passes tests passed, error = self._execute_tests(response.code, tests) result = EvaluationResult( task_id=task_id, task_type="bug_fixing", language=language, passed=passed, score=1.0 if passed else 0.0, execution_time=execution_time, error_message=error ) self.results.append(result) print(f" {task_id}: {'FIXED' if passed else 'FAILED'}") except Exception as e: print(f" {task_id}: ERROR - {str(e)}") return self._aggregate_results("Bug Detection") def _execute_tests( self, code: str, test_cases: List[str] ) -> Tuple[bool, Optional[str]]: """ Execute test cases against generated code. Args: code: Generated code to test test_cases: List of test case strings Returns: Tuple of (passed, error_message) """ try: # Create execution environment namespace = {} exec(code, namespace) # Run test cases for test in test_cases: exec(test, namespace) return True, None except Exception as e: return False, str(e) def _validate_translation( self, translated_code: str, target_language: str, expected_behavior: Optional[Dict[str, Any]] ) -> float: """ Validate translated code quality. Args: translated_code: Translated code target_language: Target language expected_behavior: Expected behavior specification Returns: Quality score (0.0 to 1.0) """ # Simplified validation - in practice would need language-specific execution score = 0.0 # Check for syntax validity (simplified) if len(translated_code.strip()) > 0: score += 0.3 # Check for language-specific keywords if target_language.lower() in translated_code.lower(): score += 0.2 # If expected behavior is specified, score higher if expected_behavior: score += 0.5 return min(score, 1.0) def _score_explanation( self, explanation: str, key_concepts: List[str] ) -> float: """ Score explanation quality based on concept coverage. Args: explanation: Generated explanation key_concepts: List of key concepts that should be covered Returns: Quality score (0.0 to 1.0) """ if not key_concepts: # Base score for reasonable length explanation return 0.8 if len(explanation) > 100 else 0.5 explanation_lower = explanation.lower() covered = sum(1 for concept in key_concepts if concept.lower() in explanation_lower) coverage_score = covered / len(key_concepts) length_score = min(len(explanation) / 500, 1.0) return (coverage_score * 0.7 + length_score * 0.3) def _aggregate_results(self, benchmark_name: str) -> BenchmarkResults: """ Aggregate evaluation results for a benchmark. Args: benchmark_name: Name of the benchmark Returns: BenchmarkResults with aggregated statistics """ benchmark_results = [r for r in self.results if benchmark_name.lower() in r.task_id.lower() or benchmark_name.lower() == r.task_type.lower()] if not benchmark_results: return BenchmarkResults( benchmark_name=benchmark_name, total_tasks=0, passed_tasks=0, failed_tasks=0, average_score=0.0, pass_rate=0.0, average_execution_time=0.0, results_by_language={} ) total = len(benchmark_results) passed = sum(1 for r in benchmark_results if r.passed) failed = total - passed avg_score = statistics.mean(r.score for r in benchmark_results) pass_rate = passed / total if total > 0 else 0.0 avg_time = statistics.mean(r.execution_time for r in benchmark_results) # Aggregate by language by_language = defaultdict(lambda: {"passed": 0, "total": 0, "score": []}) for result in benchmark_results: lang = result.language by_language[lang]["total"] += 1 if result.passed: by_language[lang]["passed"] += 1 by_language[lang]["score"].append(result.score) results_by_language = { lang: { "pass_rate": stats["passed"] / stats["total"], "average_score": statistics.mean(stats["score"]) } for lang, stats in by_language.items() } return BenchmarkResults( benchmark_name=benchmark_name, total_tasks=total, passed_tasks=passed, failed_tasks=failed, average_score=avg_score, pass_rate=pass_rate, average_execution_time=avg_time, results_by_language=results_by_language ) def save_results(self, filepath: str): """ Save evaluation results to JSON file. Args: filepath: Path to save results """ results_data = { "individual_results": [r.to_dict() for r in self.results], "summary": self.get_summary() } with open(filepath, 'w') as f: json.dump(results_data, f, indent=2) print(f"\nResults saved to {filepath}") def get_summary(self) -> Dict[str, Any]: """ Get summary of all evaluation results. Returns: Dictionary with summary statistics """ if not self.results: return {"message": "No results available"} total = len(self.results) passed = sum(1 for r in self.results if r.passed) return { "total_tasks": total, "passed_tasks": passed, "failed_tasks": total - passed, "overall_pass_rate": passed / total, "average_score": statistics.mean(r.score for r in self.results), "average_execution_time": statistics.mean(r.execution_time for r in self.results), "by_task_type": self._group_by_field("task_type"), "by_language": self._group_by_field("language") } def _group_by_field(self, field: str) -> Dict[str, Dict[str, float]]: """Group results by a specific field.""" grouped = defaultdict(lambda: {"passed": 0, "total": 0, "scores": []}) for result in self.results: value = getattr(result, field) grouped[value]["total"] += 1 if result.passed: grouped[value]["passed"] += 1 grouped[value]["scores"].append(result.score) return { key: { "pass_rate": stats["passed"] / stats["total"], "average_score": statistics.mean(stats["scores"]) } for key, stats in grouped.items() } def print_summary(self): """Print evaluation summary to console.""" summary = self.get_summary() print("\n" + "="*60) print("EVALUATION SUMMARY") print("="*60) print(f"Total Tasks: {summary['total_tasks']}") print(f"Passed: {summary['passed_tasks']}") print(f"Failed: {summary['failed_tasks']}") print(f"Overall Pass Rate: {summary['overall_pass_rate']:.2%}") print(f"Average Score: {summary['average_score']:.2f}") print(f"Average Execution Time: {summary['average_execution_time']:.2f}s") print("\nBy Task Type:") for task_type, stats in summary['by_task_type'].items(): print(f" {task_type}:") print(f" Pass Rate: {stats['pass_rate']:.2%}") print(f" Avg Score: {stats['average_score']:.2f}") print("\nBy Language:") for language, stats in summary['by_language'].items(): print(f" {language}:") print(f" Pass Rate: {stats['pass_rate']:.2%}") print(f" Avg Score: {stats['average_score']:.2f}") print("="*60) # Example usage if __name__ == "__main__": # Initialize evaluator evaluator = CodeEvaluator(api_key="your_api_key_here") # Example HumanEval problems (simplified) humaneval_problems = [ { "task_id": "HumanEval/0", "prompt": "Write a function that takes a list of numbers and returns True if the list contains a pair of numbers that sum to zero.", "test": "assert has_zero_sum([1, -1, 2]) == True\nassert has_zero_sum([1, 2, 3]) == False" } ] # Run evaluation results = evaluator.evaluate_humaneval(humaneval_problems) # Print and save results evaluator.print_summary() evaluator.save_results("evaluation_results.json")