File size: 15,423 Bytes
d6132fc
 
1d63393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1a5fca
1d63393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6132fc
 
1d63393
d6132fc
1d63393
 
 
 
 
 
 
 
 
 
 
 
 
0893bf5
1d63393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6132fc
1d63393
d6132fc
1d63393
d6132fc
1d63393
 
 
d6132fc
1d63393
d6132fc
1d63393
 
d6132fc
1d63393
 
 
d6132fc
1d63393
 
 
 
 
a811db8
d6132fc
1d63393
d6132fc
a811db8
1d63393
d6132fc
a811db8
d6132fc
a811db8
 
1d63393
a811db8
 
d6132fc
a811db8
d6132fc
 
a811db8
d6132fc
a811db8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6132fc
 
1d63393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6132fc
1d63393
d6132fc
1d63393
d6132fc
1d63393
 
 
 
 
 
d6132fc
1d63393
 
 
 
d6132fc
1d63393
 
 
d6132fc
1d63393
d6132fc
a811db8
d6132fc
a811db8
d6132fc
a811db8
 
 
1d63393
a811db8
 
1d63393
 
a811db8
 
d6132fc
a811db8
d6132fc
1d63393
 
 
 
 
 
 
 
 
 
 
 
 
 
d6132fc
a811db8
d6132fc
0ef6e83
a811db8
 
 
1d63393
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
---
license: apache-2.0
datasets:
- bigcode/the-stack-v2
- codeparrot/github-code
- openai/humaneval
- google-research-datasets/mbpp
- deepmind/code_contests
language:
- code
- en
base_model: meta-llama/Llama-2-7b-hf
tags:
- code
- code-generation
- python
- javascript
- java
- cpp
- rust
- go
- lua
- typescript
- programming
- software-engineering
- code-completion
- code-translation
- debugging
- algorithm
pipeline_tag: text-generation
library_name: transformers
metrics:
- pass@1
- pass@10
- code_eval
model-index:
- name: Troviku-1.1
  results:
  - task:
      type: text-generation
      name: Code Generation
    dataset:
      name: HumanEval
      type: openai/humaneval
    metrics:
    - type: pass@1
      value: 72.0
      name: Pass@1
    - type: pass@10
      value: 89.0
      name: Pass@10
  - task:
      type: text-generation
      name: Code Generation
    dataset:
      name: MBPP
      type: mbpp
    metrics:
    - type: pass@1
      value: 68.0
      name: Pass@1
  - task:
      type: text-generation
      name: Code Generation
    dataset:
      name: CodeContests
      type: deepmind/code_contests
    metrics:
    - type: pass@1
      value: 45.0
      name: Pass@1
---

# Troviku-1.1

## Model Card

### Model Details

**Organization:** OpenTrouter  
**Model Type:** Autoregressive Transformer Language Model  
**Model Version:** 1.1.0  
**Release Date:** January 15, 2025  
**Model License:** Apache 2.0  
**Languages:** Multi-language (25+ programming languages)  
**Model Size:** 7 billion parameters  
**Context Length:** 8,192 tokens  
**Base Model:** Llama-2-7b-hf  


### Model Description

Troviku-1.1 is the inaugural model in the Troviku series, a family of large language models specifically engineered for advanced code generation, analysis, and software development tasks. Built on a transformer architecture with 7 billion parameters, the model has been extensively trained on high-quality code repositories, technical documentation, and algorithmic implementations. Troviku-1.1 represents a significant advancement in AI-assisted programming, offering state-of-the-art performance across multiple programming languages and software engineering paradigms.

**Developed by:** OpenTrouter Research Team  
**Funded by:** OpenTrouter Inc., with compute support from cloud infrastructure partners  
**Model Family:** Troviku series  
**Base Architecture:** Transformer decoder with multi-head attention  
**Training Framework:** PyTorch 2.1 with DeepSpeed ZeRO-3  
**Fine-tuning Methods:** Supervised fine-tuning (SFT) + Reinforcement Learning from Human Feedback (RLHF)

### Intended Use

**Primary Use Cases:**
- Code generation and autocomplete in IDE environments
- Algorithm implementation and optimization
- Code translation between programming languages
- Debugging and error resolution assistance
- Technical documentation generation
- Code review and quality assessment
- Test case generation and validation
- Educational programming assistance

**Intended Users:**
- Professional software developers and engineers
- Computer science students and educators
- DevOps and infrastructure engineers
- Data scientists and ML engineers
- Open-source contributors
- Technical writers and documentation specialists

**Out-of-Scope Uses:**
- Generating malicious code, exploits, or malware
- Creating code for illegal activities or bypassing security measures
- Production-critical systems without human review and testing
- Medical diagnosis or treatment recommendation systems
- Legal document generation or legal advice
- Financial trading algorithms without regulatory compliance review
- Autonomous systems where failures could cause physical harm

## Training Data

### Data Sources

The model was trained on a carefully curated dataset comprising:

1. **The Stack v2 (50% of training data)**
   - Source: bigcode/the-stack-v2
   - Permissively licensed source code from GitHub
   - 3.8 million repositories across 600+ programming languages
   - Focus on top 25 languages with quality filtering
   - License: MIT, Apache 2.0, BSD-3-Clause

2. **GitHub Code Dataset (30% of training data)**
   - Source: codeparrot/github-code
   - Curated code snippets and functions
   - High-quality repositories with active maintenance
   - Filtered for code quality and documentation
   - License: Multiple open-source licenses

3. **Technical Documentation (10% of training data)**
   - Official language documentation (Python, JavaScript, Java, C++, etc.)
   - API references and SDK documentation
   - Framework and library documentation
   - License: CC BY 4.0, MIT, Apache 2.0

4. **Benchmark Datasets (5% of training data)**
   - HumanEval: openai/humaneval
   - MBPP: google-research-datasets/mbpp
   - CodeContests: deepmind/code_contests
   - License: MIT, Apache 2.0

5. **Educational Content (5% of training data)**
   - Programming tutorials and guides
   - Algorithm explanations and implementations
   - Stack Overflow posts under CC BY-SA 4.0
   - License: CC BY-SA 4.0

**Total Training Tokens:** 500 billion tokens  
**Training Duration:** 45 days on 512 NVIDIA A100 GPUs  
**Dataset Size:** Approximately 2.3 TB of text data  
**Languages Covered:** Python, JavaScript, TypeScript, Java, C, C++, C#, Go, Rust, Ruby, PHP, Swift, Kotlin, Scala, R, SQL, HTML, CSS, Bash, PowerShell, Lua, Perl, Haskell, Julia, MATLAB

### Data Preprocessing

**Quality Filtering:**
- Removed repositories with fewer than 10 stars or inactive for over 2 years
- Filtered out code with syntax errors or poor quality metrics
- Removed duplicates and near-duplicates using MinHash LSH
- Excluded code containing profanity, hate speech, or toxic content

**Privacy Protection:**
- Scanned for and removed personally identifiable information (PII)
- Filtered out API keys, passwords, and credentials
- Removed private email addresses and phone numbers
- Excluded internal company code and proprietary information

**License Compliance:**
- Verified all source code adheres to permissive open-source licenses
- Excluded GPL and other copyleft-licensed code to prevent license contamination
- Maintained attribution records for all training sources
- Regular audits to ensure compliance with license terms

**Bias Mitigation:**
- Balanced representation across programming languages
- Included code from diverse geographic regions and communities
- Filtered out code with discriminatory variable names or comments
- Ensured representation of different coding styles and paradigms

### Training Procedure

**Phase 1: Pretraining (35 days)**
- Objective: Causal language modeling on code corpus
- Batch size: 4 million tokens per batch
- Learning rate: 3e-4 with cosine decay
- Optimizer: AdamW (β1=0.9, β2=0.95, ε=1e-8)
- Weight decay: 0.1
- Gradient clipping: 1.0
- Mixed precision: bfloat16

**Phase 2: Supervised Fine-tuning (7 days)**
- Dataset: 150,000 high-quality code examples with human annotations
- Focus areas: Code quality, security, best practices
- Task types: Generation, completion, translation, debugging
- Evaluation: Held-out validation set with expert review

**Phase 3: RLHF (3 days)**
- Reward model trained on 50,000 human preference comparisons
- PPO optimization with KL penalty (β=0.01)
- Focus: Code correctness, safety, and alignment with user intent

## Performance

### Benchmark Results

| Benchmark | Dataset | Metric | Score |
|-----------|---------|--------|-------|
| HumanEval | openai/humaneval | pass@1 | 72.0% |
| HumanEval | openai/humaneval | pass@10 | 89.0% |
| MBPP | mbpp | pass@1 | 68.0% |
| MBPP | mbpp | pass@10 | 84.0% |
| CodeContests | deepmind/code_contests | pass@1 | 45.0% |
| MultiPL-E | Python | pass@1 | 72.0% |
| MultiPL-E | JavaScript | pass@1 | 68.0% |
| MultiPL-E | Java | pass@1 | 65.0% |
| MultiPL-E | C++ | pass@1 | 61.0% |
| DS-1000 | Data Science | pass@1 | 58.0% |

### Performance by Language

| Language | Pass@1 | Pass@10 | Notes |
|----------|--------|---------|-------|
| Python | 72.0% | 88.0% | Strongest performance |
| JavaScript | 68.0% | 85.0% | Web development focused |
| TypeScript | 67.0% | 84.0% | Type-safe JS variant |
| Java | 65.0% | 82.0% | Enterprise applications |
| C++ | 61.0% | 78.0% | System programming |
| Rust | 58.0% | 75.0% | Memory safety focused |
| Go | 64.0% | 80.0% | Concurrent programming |
| Ruby | 59.0% | 74.0% | Web frameworks |
| PHP | 60.0% | 76.0% | Web development |
| Swift | 56.0% | 72.0% | iOS development |

### Comparison to Other Models

| Model | HumanEval Pass@1 | MBPP Pass@1 | Parameters |
|-------|------------------|-------------|------------|
| GPT-4-turbo | 84.0% | 80.0% | Unknown |
| Claude-3.5-Sonnet | 82.0% | 78.0% | Unknown |
| **Troviku-1.1** | **72.0%** | **68.0%** | **7B** |
| CodeLlama-34B | 68.0% | 62.0% | 34B |
| StarCoder2-15B | 66.0% | 60.0% | 15B |
| WizardCoder-15B | 64.0% | 58.0% | 15B |

## Quick Start

### Installation

```bash
pip install troviku-client transformers torch
```

### Using Transformers Library

```python
from transformers import AutoTokenizer, AutoModelForCausalLM

model_name = "OpenTrouter/Troviku-1.1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

prompt = "def calculate_fibonacci(n):\n    "
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=200)
code = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(code)
```

### Using Troviku Client

```python
from troviku_client import TrovikuClient, Language

client = TrovikuClient(api_key="your_api_key")

response = client.generate(
    prompt="Create a binary search tree implementation with insert and search methods",
    language=Language.PYTHON,
    max_tokens=1024
)

print(response.code)
```

### API Integration

```python
import requests

url = "https://api.opentrouter.ai/v1/chat/completions"
headers = {
    "Authorization": "Bearer YOUR_API_KEY",
    "Content-Type": "application/json"
}

payload = {
    "model": "OpenTrouter/Troviku-1.1",
    "messages": [
        {"role": "user", "content": "Write a function to calculate Fibonacci numbers"}
    ],
    "temperature": 0.7
}

response = requests.post(url, json=payload, headers=headers)
print(response.json())
```

## Model Architecture

**Architecture Type:** Transformer Decoder  
**Number of Layers:** 32  
**Hidden Size:** 4096  
**Attention Heads:** 32  
**Key-Value Heads:** 8 (Grouped Query Attention)  
**Intermediate Size:** 14336  
**Activation Function:** SiLU (Swish)  
**Vocabulary Size:** 32,768 tokens  
**Positional Encoding:** RoPE (Rotary Position Embedding)  
**Normalization:** RMSNorm  
**Precision:** bfloat16

## Hardware Requirements

### Minimum Requirements
- **GPU:** 16GB VRAM (e.g., NVIDIA RTX 4090, A10)
- **RAM:** 32GB system memory
- **Storage:** 20GB for model weights

### Recommended Requirements
- **GPU:** 24GB+ VRAM (e.g., NVIDIA A100, RTX 6000 Ada)
- **RAM:** 64GB system memory
- **Storage:** 50GB for model, cache, and datasets

### Quantization Support
- **int8:** 8GB VRAM, 2x faster inference
- **int4:** 4GB VRAM, 4x faster inference
- **GPTQ:** Optimized 4-bit quantization
- **AWQ:** Activation-aware quantization

## Limitations

### Technical Limitations
- Context window limited to 8,192 tokens
- May generate syntactically correct but logically flawed code
- Performance degrades on very specialized or proprietary frameworks
- Limited understanding of complex multi-file codebases
- May not always follow organization-specific coding standards

### Language-Specific Limitations
- Stronger performance on popular languages (Python, JavaScript, Java)
- Weaker performance on rare or legacy languages
- Limited knowledge of cutting-edge language features released after training cutoff
- May struggle with highly domain-specific DSLs

### Safety Considerations
- Generated code should always be reviewed by experienced developers
- Security-critical code requires thorough security audits
- May inadvertently suggest vulnerable code patterns
- Not suitable for safety-critical systems without extensive testing

### Bias Considerations
- May reflect biases present in training data (e.g., over-representation of certain coding styles)
- Training data predominantly from English-language repositories
- Potential underrepresentation of non-Western coding conventions
- May perpetuate historical biases in variable naming and comments

## Ethical Considerations

### Environmental Impact
- **Training Emissions:** Approximately 25 tons CO2 equivalent
- **Mitigation:** Used renewable energy data centers, carbon offset programs
- **Inference Efficiency:** Optimized for low-latency, energy-efficient deployment

### Attribution and Licensing
- All training data sourced from permissively licensed repositories
- Respects original authors' licensing terms
- Provides attribution capabilities in generated code comments
- Excludes copyleft-licensed code to prevent license contamination

### Dual-Use Concerns
The model could potentially be misused for:
- Generating malicious code or exploits
- Automating spam or phishing campaigns
- Creating code to circumvent security measures

**Mitigation Strategies:**
- Refusal training for malicious code generation requests
- Usage monitoring and rate limiting
- Terms of service enforcement
- Community reporting mechanisms
- Collaboration with security researchers

## License

This model is released under the **Apache License 2.0**.

### License Terms Summary
- **Commercial Use:** Permitted
- **Modification:** Permitted
- **Distribution:** Permitted
- **Patent Use:** Permitted
- **Private Use:** Permitted

**Conditions:**
- License and copyright notice must be included
- State changes made to the code
- Provide attribution to original authors

**Limitations:**
- No trademark use
- No liability or warranty

See the [LICENSE](LICENSE) file for full details.

## Citation

If you use Troviku-1.1 in your research or projects, please cite:

```bibtex
@misc{troviku2025,
  title={Troviku-1.1: A Specialized Code Generation Model},
  author={OpenTrouter Research Team},
  year={2025},
  publisher={OpenTrouter},
  howpublished={\url{https://github.com/OpenTrouter/Troviku-1.1}},
  note={Apache License 2.0}
}
```

## Support and Community

- **Documentation:** [https://docs.opentrouter.ai/troviku](https://docs.opentrouter.ai/troviku)
- **Issues:** [GitHub Issues](https://github.com/OpenTrouter/Troviku-1.1/issues)
- **Discord:** [OpenTrouter Community](https://discord.gg/opentrouter)
- **Email:** support@opentrouter.ai
- **Twitter:** [@OpenTrouter](https://twitter.com/opentrouter)

## Acknowledgments

The Troviku team acknowledges:
- The open-source community for providing training data
- BigCode project for The Stack v2 dataset
- Hugging Face for infrastructure and hosting
- NVIDIA for compute support
- All contributors who helped with model evaluation and testing

## Version History

### v1.1.0 (Current - November 3, 2025)
- Initial release of the Troviku series
- Support for 25+ programming languages
- Optimized inference performance
- Enhanced code quality and safety features
- RLHF alignment for improved code generation

### Upcoming Features (v1.2.0)
- Extended context window to 16,384 tokens
- Improved multi-file code understanding
- Enhanced support for rare programming languages
- Better handling of code comments and documentation
- Integration with popular IDEs