Delta-Vector commited on
Commit
9c4f9dc
·
verified ·
1 Parent(s): 9cb0a1b

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MistralForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "head_dim": 128,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 5120,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 14336,
13
+ "max_position_embeddings": 131072,
14
+ "model_type": "mistral",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 76,
17
+ "num_key_value_heads": 8,
18
+ "rms_norm_eps": 1e-05,
19
+ "rope_theta": 1000000.0,
20
+ "sliding_window": null,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "bfloat16",
23
+ "transformers_version": "4.54.1",
24
+ "use_cache": false,
25
+ "vocab_size": 131072
26
+ }
generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "do_sample": true,
5
+ "eos_token_id": 2,
6
+ "transformers_version": "4.54.1",
7
+ "use_cache": false
8
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step160
model-00001-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbbe6b36c1b4ab0ac40a675063ee9545b8d9c7023f109f9a92da5cf81e702aa6
3
+ size 4865522496
model-00002-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03b82fde444cf1fa9ed57eac4e1b45a9d109d2f766cb7f6a36e50ffe1b3a19c8
3
+ size 4907529424
model-00003-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21f3222f928af04de58211d9c17c7d9b80e06096fef01b898dc8a36bec702bb9
3
+ size 4907529456
model-00004-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9416b62bbc030fd32681b4a7efd9706775ea05642ded343555baf5ec9f634be8
3
+ size 4907529456
model-00005-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f586981176629bc7ab840fed793eb98d0cb97ee7f4d33cc8191e28d84059f71
3
+ size 4907529456
model-00006-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc4c91d1174a32d90f3d1cad84ef782b3421584282af5b6fa452d9b6f25fb925
3
+ size 4907529456
model-00007-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b81a309640bd66cab4980de8f702a0e2ca392023dbb5692693f82d362609d5ca
3
+ size 4907529456
model-00008-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b03f65ae53839884fe6e98516ff9701e4ba22569f34b2468a7ebc01c7652157a
3
+ size 4907529456
model-00009-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22a4e2f132d35f5a272dbe2f9d189e7552661d2233268f1ff067cb9c1d88022d
3
+ size 4907496272
model.safetensors.index.json ADDED
@@ -0,0 +1,695 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 783360,
4
+ "total_size": 44125644800
5
+ },
6
+ "weight_map": {
7
+ "lm_head.weight": "model-00009-of-00009.safetensors",
8
+ "model.embed_tokens.weight": "model-00001-of-00009.safetensors",
9
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00009.safetensors",
10
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00009.safetensors",
11
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00009.safetensors",
12
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00009.safetensors",
13
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00009.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
16
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
17
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
18
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00009.safetensors",
19
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00009.safetensors",
20
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00009.safetensors",
21
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00009.safetensors",
22
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00009.safetensors",
23
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
24
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
25
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
26
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
27
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00009.safetensors",
28
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00009.safetensors",
29
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00009.safetensors",
30
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00009.safetensors",
31
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
32
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
33
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
34
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
35
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
36
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00009.safetensors",
37
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00009.safetensors",
38
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00009.safetensors",
39
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00009.safetensors",
40
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
41
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
42
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
43
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
44
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
45
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00009.safetensors",
46
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00009.safetensors",
47
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00009.safetensors",
48
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00009.safetensors",
49
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
50
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
51
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
52
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
53
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
54
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00009.safetensors",
55
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00009.safetensors",
56
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00009.safetensors",
57
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00009.safetensors",
58
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
59
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
60
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
61
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
62
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
63
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00009.safetensors",
64
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00009.safetensors",
65
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00009.safetensors",
66
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00009.safetensors",
67
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
68
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
69
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
70
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
71
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
72
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00009.safetensors",
73
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00009.safetensors",
74
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00009.safetensors",
75
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00009.safetensors",
76
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
77
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
78
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
79
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
80
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
81
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00009.safetensors",
82
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00009.safetensors",
83
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00009.safetensors",
84
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00009.safetensors",
85
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
86
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
87
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
88
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
89
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
90
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00009.safetensors",
91
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00009.safetensors",
92
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00009.safetensors",
93
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00009.safetensors",
94
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
95
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
96
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
97
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
98
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
99
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00009.safetensors",
100
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00009.safetensors",
101
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00009.safetensors",
102
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00009.safetensors",
103
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
104
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
105
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
106
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
107
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
108
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00009.safetensors",
109
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00009.safetensors",
110
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00009.safetensors",
111
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00009.safetensors",
112
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
113
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
114
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
115
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
116
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
117
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00009.safetensors",
118
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00009.safetensors",
119
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00009.safetensors",
120
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00009.safetensors",
121
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00009.safetensors",
122
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
123
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
124
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
125
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
126
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00009.safetensors",
127
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00009.safetensors",
128
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00009.safetensors",
129
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00009.safetensors",
130
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
131
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
132
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
133
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
134
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
135
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00009.safetensors",
136
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00009.safetensors",
137
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00009.safetensors",
138
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00009.safetensors",
139
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
140
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
141
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
142
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
143
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
144
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00009.safetensors",
145
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00009.safetensors",
146
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00009.safetensors",
147
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00009.safetensors",
148
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
149
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
150
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
151
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
152
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
153
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00009.safetensors",
154
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00009.safetensors",
155
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00009.safetensors",
156
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00009.safetensors",
157
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
158
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
159
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
160
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
161
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
162
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00009.safetensors",
163
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00009.safetensors",
164
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00009.safetensors",
165
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00009.safetensors",
166
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
167
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
168
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
169
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
170
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
171
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00009.safetensors",
172
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00009.safetensors",
173
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00009.safetensors",
174
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00009.safetensors",
175
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
176
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
177
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
178
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
179
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
180
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00009.safetensors",
181
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00009.safetensors",
182
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00009.safetensors",
183
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00009.safetensors",
184
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
185
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
186
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
187
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
188
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
189
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00009.safetensors",
190
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00009.safetensors",
191
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00009.safetensors",
192
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00009.safetensors",
193
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
194
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
195
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
196
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
197
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
198
+ "model.layers.28.input_layernorm.weight": "model-00004-of-00009.safetensors",
199
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00009.safetensors",
200
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00009.safetensors",
201
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00009.safetensors",
202
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
203
+ "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
204
+ "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
205
+ "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
206
+ "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
207
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00009.safetensors",
208
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00009.safetensors",
209
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00009.safetensors",
210
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00009.safetensors",
211
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
212
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
213
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
214
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
215
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
216
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00009.safetensors",
217
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00009.safetensors",
218
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00009.safetensors",
219
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00009.safetensors",
220
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00009.safetensors",
221
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
222
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
223
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
224
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
225
+ "model.layers.30.input_layernorm.weight": "model-00004-of-00009.safetensors",
226
+ "model.layers.30.mlp.down_proj.weight": "model-00004-of-00009.safetensors",
227
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00009.safetensors",
228
+ "model.layers.30.mlp.up_proj.weight": "model-00004-of-00009.safetensors",
229
+ "model.layers.30.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
230
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
231
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
232
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
233
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
234
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00009.safetensors",
235
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00009.safetensors",
236
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00009.safetensors",
237
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00009.safetensors",
238
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
239
+ "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
240
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
241
+ "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
242
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
243
+ "model.layers.32.input_layernorm.weight": "model-00004-of-00009.safetensors",
244
+ "model.layers.32.mlp.down_proj.weight": "model-00004-of-00009.safetensors",
245
+ "model.layers.32.mlp.gate_proj.weight": "model-00004-of-00009.safetensors",
246
+ "model.layers.32.mlp.up_proj.weight": "model-00004-of-00009.safetensors",
247
+ "model.layers.32.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
248
+ "model.layers.32.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
249
+ "model.layers.32.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
250
+ "model.layers.32.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
251
+ "model.layers.32.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
252
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00009.safetensors",
253
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00009.safetensors",
254
+ "model.layers.33.mlp.gate_proj.weight": "model-00004-of-00009.safetensors",
255
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00009.safetensors",
256
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
257
+ "model.layers.33.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
258
+ "model.layers.33.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
259
+ "model.layers.33.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
260
+ "model.layers.33.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
261
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00009.safetensors",
262
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00009.safetensors",
263
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00009.safetensors",
264
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00009.safetensors",
265
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
266
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
267
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
268
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
269
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
270
+ "model.layers.35.input_layernorm.weight": "model-00005-of-00009.safetensors",
271
+ "model.layers.35.mlp.down_proj.weight": "model-00005-of-00009.safetensors",
272
+ "model.layers.35.mlp.gate_proj.weight": "model-00005-of-00009.safetensors",
273
+ "model.layers.35.mlp.up_proj.weight": "model-00005-of-00009.safetensors",
274
+ "model.layers.35.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
275
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
276
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
277
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
278
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
279
+ "model.layers.36.input_layernorm.weight": "model-00005-of-00009.safetensors",
280
+ "model.layers.36.mlp.down_proj.weight": "model-00005-of-00009.safetensors",
281
+ "model.layers.36.mlp.gate_proj.weight": "model-00005-of-00009.safetensors",
282
+ "model.layers.36.mlp.up_proj.weight": "model-00005-of-00009.safetensors",
283
+ "model.layers.36.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
284
+ "model.layers.36.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
285
+ "model.layers.36.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
286
+ "model.layers.36.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
287
+ "model.layers.36.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
288
+ "model.layers.37.input_layernorm.weight": "model-00005-of-00009.safetensors",
289
+ "model.layers.37.mlp.down_proj.weight": "model-00005-of-00009.safetensors",
290
+ "model.layers.37.mlp.gate_proj.weight": "model-00005-of-00009.safetensors",
291
+ "model.layers.37.mlp.up_proj.weight": "model-00005-of-00009.safetensors",
292
+ "model.layers.37.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
293
+ "model.layers.37.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
294
+ "model.layers.37.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
295
+ "model.layers.37.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
296
+ "model.layers.37.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
297
+ "model.layers.38.input_layernorm.weight": "model-00005-of-00009.safetensors",
298
+ "model.layers.38.mlp.down_proj.weight": "model-00005-of-00009.safetensors",
299
+ "model.layers.38.mlp.gate_proj.weight": "model-00005-of-00009.safetensors",
300
+ "model.layers.38.mlp.up_proj.weight": "model-00005-of-00009.safetensors",
301
+ "model.layers.38.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
302
+ "model.layers.38.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
303
+ "model.layers.38.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
304
+ "model.layers.38.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
305
+ "model.layers.38.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
306
+ "model.layers.39.input_layernorm.weight": "model-00005-of-00009.safetensors",
307
+ "model.layers.39.mlp.down_proj.weight": "model-00005-of-00009.safetensors",
308
+ "model.layers.39.mlp.gate_proj.weight": "model-00005-of-00009.safetensors",
309
+ "model.layers.39.mlp.up_proj.weight": "model-00005-of-00009.safetensors",
310
+ "model.layers.39.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
311
+ "model.layers.39.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
312
+ "model.layers.39.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
313
+ "model.layers.39.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
314
+ "model.layers.39.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
315
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00009.safetensors",
316
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00009.safetensors",
317
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00009.safetensors",
318
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00009.safetensors",
319
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00009.safetensors",
320
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
321
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
322
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
323
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
324
+ "model.layers.40.input_layernorm.weight": "model-00005-of-00009.safetensors",
325
+ "model.layers.40.mlp.down_proj.weight": "model-00005-of-00009.safetensors",
326
+ "model.layers.40.mlp.gate_proj.weight": "model-00005-of-00009.safetensors",
327
+ "model.layers.40.mlp.up_proj.weight": "model-00005-of-00009.safetensors",
328
+ "model.layers.40.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
329
+ "model.layers.40.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
330
+ "model.layers.40.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
331
+ "model.layers.40.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
332
+ "model.layers.40.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
333
+ "model.layers.41.input_layernorm.weight": "model-00005-of-00009.safetensors",
334
+ "model.layers.41.mlp.down_proj.weight": "model-00005-of-00009.safetensors",
335
+ "model.layers.41.mlp.gate_proj.weight": "model-00005-of-00009.safetensors",
336
+ "model.layers.41.mlp.up_proj.weight": "model-00005-of-00009.safetensors",
337
+ "model.layers.41.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
338
+ "model.layers.41.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
339
+ "model.layers.41.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
340
+ "model.layers.41.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
341
+ "model.layers.41.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
342
+ "model.layers.42.input_layernorm.weight": "model-00006-of-00009.safetensors",
343
+ "model.layers.42.mlp.down_proj.weight": "model-00006-of-00009.safetensors",
344
+ "model.layers.42.mlp.gate_proj.weight": "model-00005-of-00009.safetensors",
345
+ "model.layers.42.mlp.up_proj.weight": "model-00006-of-00009.safetensors",
346
+ "model.layers.42.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
347
+ "model.layers.42.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
348
+ "model.layers.42.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
349
+ "model.layers.42.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
350
+ "model.layers.42.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
351
+ "model.layers.43.input_layernorm.weight": "model-00006-of-00009.safetensors",
352
+ "model.layers.43.mlp.down_proj.weight": "model-00006-of-00009.safetensors",
353
+ "model.layers.43.mlp.gate_proj.weight": "model-00006-of-00009.safetensors",
354
+ "model.layers.43.mlp.up_proj.weight": "model-00006-of-00009.safetensors",
355
+ "model.layers.43.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
356
+ "model.layers.43.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
357
+ "model.layers.43.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
358
+ "model.layers.43.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
359
+ "model.layers.43.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
360
+ "model.layers.44.input_layernorm.weight": "model-00006-of-00009.safetensors",
361
+ "model.layers.44.mlp.down_proj.weight": "model-00006-of-00009.safetensors",
362
+ "model.layers.44.mlp.gate_proj.weight": "model-00006-of-00009.safetensors",
363
+ "model.layers.44.mlp.up_proj.weight": "model-00006-of-00009.safetensors",
364
+ "model.layers.44.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
365
+ "model.layers.44.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
366
+ "model.layers.44.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
367
+ "model.layers.44.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
368
+ "model.layers.44.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
369
+ "model.layers.45.input_layernorm.weight": "model-00006-of-00009.safetensors",
370
+ "model.layers.45.mlp.down_proj.weight": "model-00006-of-00009.safetensors",
371
+ "model.layers.45.mlp.gate_proj.weight": "model-00006-of-00009.safetensors",
372
+ "model.layers.45.mlp.up_proj.weight": "model-00006-of-00009.safetensors",
373
+ "model.layers.45.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
374
+ "model.layers.45.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
375
+ "model.layers.45.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
376
+ "model.layers.45.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
377
+ "model.layers.45.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
378
+ "model.layers.46.input_layernorm.weight": "model-00006-of-00009.safetensors",
379
+ "model.layers.46.mlp.down_proj.weight": "model-00006-of-00009.safetensors",
380
+ "model.layers.46.mlp.gate_proj.weight": "model-00006-of-00009.safetensors",
381
+ "model.layers.46.mlp.up_proj.weight": "model-00006-of-00009.safetensors",
382
+ "model.layers.46.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
383
+ "model.layers.46.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
384
+ "model.layers.46.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
385
+ "model.layers.46.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
386
+ "model.layers.46.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
387
+ "model.layers.47.input_layernorm.weight": "model-00006-of-00009.safetensors",
388
+ "model.layers.47.mlp.down_proj.weight": "model-00006-of-00009.safetensors",
389
+ "model.layers.47.mlp.gate_proj.weight": "model-00006-of-00009.safetensors",
390
+ "model.layers.47.mlp.up_proj.weight": "model-00006-of-00009.safetensors",
391
+ "model.layers.47.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
392
+ "model.layers.47.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
393
+ "model.layers.47.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
394
+ "model.layers.47.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
395
+ "model.layers.47.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
396
+ "model.layers.48.input_layernorm.weight": "model-00006-of-00009.safetensors",
397
+ "model.layers.48.mlp.down_proj.weight": "model-00006-of-00009.safetensors",
398
+ "model.layers.48.mlp.gate_proj.weight": "model-00006-of-00009.safetensors",
399
+ "model.layers.48.mlp.up_proj.weight": "model-00006-of-00009.safetensors",
400
+ "model.layers.48.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
401
+ "model.layers.48.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
402
+ "model.layers.48.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
403
+ "model.layers.48.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
404
+ "model.layers.48.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
405
+ "model.layers.49.input_layernorm.weight": "model-00006-of-00009.safetensors",
406
+ "model.layers.49.mlp.down_proj.weight": "model-00006-of-00009.safetensors",
407
+ "model.layers.49.mlp.gate_proj.weight": "model-00006-of-00009.safetensors",
408
+ "model.layers.49.mlp.up_proj.weight": "model-00006-of-00009.safetensors",
409
+ "model.layers.49.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
410
+ "model.layers.49.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
411
+ "model.layers.49.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
412
+ "model.layers.49.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
413
+ "model.layers.49.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
414
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00009.safetensors",
415
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00009.safetensors",
416
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00009.safetensors",
417
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00009.safetensors",
418
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00009.safetensors",
419
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
420
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
421
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
422
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
423
+ "model.layers.50.input_layernorm.weight": "model-00006-of-00009.safetensors",
424
+ "model.layers.50.mlp.down_proj.weight": "model-00006-of-00009.safetensors",
425
+ "model.layers.50.mlp.gate_proj.weight": "model-00006-of-00009.safetensors",
426
+ "model.layers.50.mlp.up_proj.weight": "model-00006-of-00009.safetensors",
427
+ "model.layers.50.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
428
+ "model.layers.50.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
429
+ "model.layers.50.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
430
+ "model.layers.50.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
431
+ "model.layers.50.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
432
+ "model.layers.51.input_layernorm.weight": "model-00007-of-00009.safetensors",
433
+ "model.layers.51.mlp.down_proj.weight": "model-00007-of-00009.safetensors",
434
+ "model.layers.51.mlp.gate_proj.weight": "model-00006-of-00009.safetensors",
435
+ "model.layers.51.mlp.up_proj.weight": "model-00007-of-00009.safetensors",
436
+ "model.layers.51.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
437
+ "model.layers.51.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
438
+ "model.layers.51.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
439
+ "model.layers.51.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
440
+ "model.layers.51.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
441
+ "model.layers.52.input_layernorm.weight": "model-00007-of-00009.safetensors",
442
+ "model.layers.52.mlp.down_proj.weight": "model-00007-of-00009.safetensors",
443
+ "model.layers.52.mlp.gate_proj.weight": "model-00007-of-00009.safetensors",
444
+ "model.layers.52.mlp.up_proj.weight": "model-00007-of-00009.safetensors",
445
+ "model.layers.52.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
446
+ "model.layers.52.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
447
+ "model.layers.52.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
448
+ "model.layers.52.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
449
+ "model.layers.52.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
450
+ "model.layers.53.input_layernorm.weight": "model-00007-of-00009.safetensors",
451
+ "model.layers.53.mlp.down_proj.weight": "model-00007-of-00009.safetensors",
452
+ "model.layers.53.mlp.gate_proj.weight": "model-00007-of-00009.safetensors",
453
+ "model.layers.53.mlp.up_proj.weight": "model-00007-of-00009.safetensors",
454
+ "model.layers.53.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
455
+ "model.layers.53.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
456
+ "model.layers.53.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
457
+ "model.layers.53.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
458
+ "model.layers.53.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
459
+ "model.layers.54.input_layernorm.weight": "model-00007-of-00009.safetensors",
460
+ "model.layers.54.mlp.down_proj.weight": "model-00007-of-00009.safetensors",
461
+ "model.layers.54.mlp.gate_proj.weight": "model-00007-of-00009.safetensors",
462
+ "model.layers.54.mlp.up_proj.weight": "model-00007-of-00009.safetensors",
463
+ "model.layers.54.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
464
+ "model.layers.54.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
465
+ "model.layers.54.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
466
+ "model.layers.54.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
467
+ "model.layers.54.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
468
+ "model.layers.55.input_layernorm.weight": "model-00007-of-00009.safetensors",
469
+ "model.layers.55.mlp.down_proj.weight": "model-00007-of-00009.safetensors",
470
+ "model.layers.55.mlp.gate_proj.weight": "model-00007-of-00009.safetensors",
471
+ "model.layers.55.mlp.up_proj.weight": "model-00007-of-00009.safetensors",
472
+ "model.layers.55.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
473
+ "model.layers.55.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
474
+ "model.layers.55.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
475
+ "model.layers.55.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
476
+ "model.layers.55.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
477
+ "model.layers.56.input_layernorm.weight": "model-00007-of-00009.safetensors",
478
+ "model.layers.56.mlp.down_proj.weight": "model-00007-of-00009.safetensors",
479
+ "model.layers.56.mlp.gate_proj.weight": "model-00007-of-00009.safetensors",
480
+ "model.layers.56.mlp.up_proj.weight": "model-00007-of-00009.safetensors",
481
+ "model.layers.56.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
482
+ "model.layers.56.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
483
+ "model.layers.56.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
484
+ "model.layers.56.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
485
+ "model.layers.56.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
486
+ "model.layers.57.input_layernorm.weight": "model-00007-of-00009.safetensors",
487
+ "model.layers.57.mlp.down_proj.weight": "model-00007-of-00009.safetensors",
488
+ "model.layers.57.mlp.gate_proj.weight": "model-00007-of-00009.safetensors",
489
+ "model.layers.57.mlp.up_proj.weight": "model-00007-of-00009.safetensors",
490
+ "model.layers.57.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
491
+ "model.layers.57.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
492
+ "model.layers.57.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
493
+ "model.layers.57.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
494
+ "model.layers.57.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
495
+ "model.layers.58.input_layernorm.weight": "model-00007-of-00009.safetensors",
496
+ "model.layers.58.mlp.down_proj.weight": "model-00007-of-00009.safetensors",
497
+ "model.layers.58.mlp.gate_proj.weight": "model-00007-of-00009.safetensors",
498
+ "model.layers.58.mlp.up_proj.weight": "model-00007-of-00009.safetensors",
499
+ "model.layers.58.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
500
+ "model.layers.58.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
501
+ "model.layers.58.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
502
+ "model.layers.58.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
503
+ "model.layers.58.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
504
+ "model.layers.59.input_layernorm.weight": "model-00007-of-00009.safetensors",
505
+ "model.layers.59.mlp.down_proj.weight": "model-00007-of-00009.safetensors",
506
+ "model.layers.59.mlp.gate_proj.weight": "model-00007-of-00009.safetensors",
507
+ "model.layers.59.mlp.up_proj.weight": "model-00007-of-00009.safetensors",
508
+ "model.layers.59.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
509
+ "model.layers.59.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
510
+ "model.layers.59.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
511
+ "model.layers.59.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
512
+ "model.layers.59.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
513
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00009.safetensors",
514
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00009.safetensors",
515
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00009.safetensors",
516
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00009.safetensors",
517
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
518
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
519
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
520
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
521
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
522
+ "model.layers.60.input_layernorm.weight": "model-00008-of-00009.safetensors",
523
+ "model.layers.60.mlp.down_proj.weight": "model-00008-of-00009.safetensors",
524
+ "model.layers.60.mlp.gate_proj.weight": "model-00007-of-00009.safetensors",
525
+ "model.layers.60.mlp.up_proj.weight": "model-00008-of-00009.safetensors",
526
+ "model.layers.60.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
527
+ "model.layers.60.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
528
+ "model.layers.60.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
529
+ "model.layers.60.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
530
+ "model.layers.60.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
531
+ "model.layers.61.input_layernorm.weight": "model-00008-of-00009.safetensors",
532
+ "model.layers.61.mlp.down_proj.weight": "model-00008-of-00009.safetensors",
533
+ "model.layers.61.mlp.gate_proj.weight": "model-00008-of-00009.safetensors",
534
+ "model.layers.61.mlp.up_proj.weight": "model-00008-of-00009.safetensors",
535
+ "model.layers.61.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
536
+ "model.layers.61.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
537
+ "model.layers.61.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
538
+ "model.layers.61.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
539
+ "model.layers.61.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
540
+ "model.layers.62.input_layernorm.weight": "model-00008-of-00009.safetensors",
541
+ "model.layers.62.mlp.down_proj.weight": "model-00008-of-00009.safetensors",
542
+ "model.layers.62.mlp.gate_proj.weight": "model-00008-of-00009.safetensors",
543
+ "model.layers.62.mlp.up_proj.weight": "model-00008-of-00009.safetensors",
544
+ "model.layers.62.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
545
+ "model.layers.62.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
546
+ "model.layers.62.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
547
+ "model.layers.62.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
548
+ "model.layers.62.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
549
+ "model.layers.63.input_layernorm.weight": "model-00008-of-00009.safetensors",
550
+ "model.layers.63.mlp.down_proj.weight": "model-00008-of-00009.safetensors",
551
+ "model.layers.63.mlp.gate_proj.weight": "model-00008-of-00009.safetensors",
552
+ "model.layers.63.mlp.up_proj.weight": "model-00008-of-00009.safetensors",
553
+ "model.layers.63.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
554
+ "model.layers.63.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
555
+ "model.layers.63.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
556
+ "model.layers.63.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
557
+ "model.layers.63.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
558
+ "model.layers.64.input_layernorm.weight": "model-00008-of-00009.safetensors",
559
+ "model.layers.64.mlp.down_proj.weight": "model-00008-of-00009.safetensors",
560
+ "model.layers.64.mlp.gate_proj.weight": "model-00008-of-00009.safetensors",
561
+ "model.layers.64.mlp.up_proj.weight": "model-00008-of-00009.safetensors",
562
+ "model.layers.64.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
563
+ "model.layers.64.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
564
+ "model.layers.64.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
565
+ "model.layers.64.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
566
+ "model.layers.64.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
567
+ "model.layers.65.input_layernorm.weight": "model-00008-of-00009.safetensors",
568
+ "model.layers.65.mlp.down_proj.weight": "model-00008-of-00009.safetensors",
569
+ "model.layers.65.mlp.gate_proj.weight": "model-00008-of-00009.safetensors",
570
+ "model.layers.65.mlp.up_proj.weight": "model-00008-of-00009.safetensors",
571
+ "model.layers.65.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
572
+ "model.layers.65.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
573
+ "model.layers.65.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
574
+ "model.layers.65.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
575
+ "model.layers.65.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
576
+ "model.layers.66.input_layernorm.weight": "model-00008-of-00009.safetensors",
577
+ "model.layers.66.mlp.down_proj.weight": "model-00008-of-00009.safetensors",
578
+ "model.layers.66.mlp.gate_proj.weight": "model-00008-of-00009.safetensors",
579
+ "model.layers.66.mlp.up_proj.weight": "model-00008-of-00009.safetensors",
580
+ "model.layers.66.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
581
+ "model.layers.66.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
582
+ "model.layers.66.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
583
+ "model.layers.66.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
584
+ "model.layers.66.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
585
+ "model.layers.67.input_layernorm.weight": "model-00008-of-00009.safetensors",
586
+ "model.layers.67.mlp.down_proj.weight": "model-00008-of-00009.safetensors",
587
+ "model.layers.67.mlp.gate_proj.weight": "model-00008-of-00009.safetensors",
588
+ "model.layers.67.mlp.up_proj.weight": "model-00008-of-00009.safetensors",
589
+ "model.layers.67.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
590
+ "model.layers.67.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
591
+ "model.layers.67.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
592
+ "model.layers.67.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
593
+ "model.layers.67.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
594
+ "model.layers.68.input_layernorm.weight": "model-00008-of-00009.safetensors",
595
+ "model.layers.68.mlp.down_proj.weight": "model-00008-of-00009.safetensors",
596
+ "model.layers.68.mlp.gate_proj.weight": "model-00008-of-00009.safetensors",
597
+ "model.layers.68.mlp.up_proj.weight": "model-00008-of-00009.safetensors",
598
+ "model.layers.68.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
599
+ "model.layers.68.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
600
+ "model.layers.68.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
601
+ "model.layers.68.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
602
+ "model.layers.68.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
603
+ "model.layers.69.input_layernorm.weight": "model-00009-of-00009.safetensors",
604
+ "model.layers.69.mlp.down_proj.weight": "model-00009-of-00009.safetensors",
605
+ "model.layers.69.mlp.gate_proj.weight": "model-00008-of-00009.safetensors",
606
+ "model.layers.69.mlp.up_proj.weight": "model-00009-of-00009.safetensors",
607
+ "model.layers.69.post_attention_layernorm.weight": "model-00009-of-00009.safetensors",
608
+ "model.layers.69.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
609
+ "model.layers.69.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
610
+ "model.layers.69.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
611
+ "model.layers.69.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
612
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00009.safetensors",
613
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00009.safetensors",
614
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00009.safetensors",
615
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00009.safetensors",
616
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
617
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
618
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
619
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
620
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
621
+ "model.layers.70.input_layernorm.weight": "model-00009-of-00009.safetensors",
622
+ "model.layers.70.mlp.down_proj.weight": "model-00009-of-00009.safetensors",
623
+ "model.layers.70.mlp.gate_proj.weight": "model-00009-of-00009.safetensors",
624
+ "model.layers.70.mlp.up_proj.weight": "model-00009-of-00009.safetensors",
625
+ "model.layers.70.post_attention_layernorm.weight": "model-00009-of-00009.safetensors",
626
+ "model.layers.70.self_attn.k_proj.weight": "model-00009-of-00009.safetensors",
627
+ "model.layers.70.self_attn.o_proj.weight": "model-00009-of-00009.safetensors",
628
+ "model.layers.70.self_attn.q_proj.weight": "model-00009-of-00009.safetensors",
629
+ "model.layers.70.self_attn.v_proj.weight": "model-00009-of-00009.safetensors",
630
+ "model.layers.71.input_layernorm.weight": "model-00009-of-00009.safetensors",
631
+ "model.layers.71.mlp.down_proj.weight": "model-00009-of-00009.safetensors",
632
+ "model.layers.71.mlp.gate_proj.weight": "model-00009-of-00009.safetensors",
633
+ "model.layers.71.mlp.up_proj.weight": "model-00009-of-00009.safetensors",
634
+ "model.layers.71.post_attention_layernorm.weight": "model-00009-of-00009.safetensors",
635
+ "model.layers.71.self_attn.k_proj.weight": "model-00009-of-00009.safetensors",
636
+ "model.layers.71.self_attn.o_proj.weight": "model-00009-of-00009.safetensors",
637
+ "model.layers.71.self_attn.q_proj.weight": "model-00009-of-00009.safetensors",
638
+ "model.layers.71.self_attn.v_proj.weight": "model-00009-of-00009.safetensors",
639
+ "model.layers.72.input_layernorm.weight": "model-00009-of-00009.safetensors",
640
+ "model.layers.72.mlp.down_proj.weight": "model-00009-of-00009.safetensors",
641
+ "model.layers.72.mlp.gate_proj.weight": "model-00009-of-00009.safetensors",
642
+ "model.layers.72.mlp.up_proj.weight": "model-00009-of-00009.safetensors",
643
+ "model.layers.72.post_attention_layernorm.weight": "model-00009-of-00009.safetensors",
644
+ "model.layers.72.self_attn.k_proj.weight": "model-00009-of-00009.safetensors",
645
+ "model.layers.72.self_attn.o_proj.weight": "model-00009-of-00009.safetensors",
646
+ "model.layers.72.self_attn.q_proj.weight": "model-00009-of-00009.safetensors",
647
+ "model.layers.72.self_attn.v_proj.weight": "model-00009-of-00009.safetensors",
648
+ "model.layers.73.input_layernorm.weight": "model-00009-of-00009.safetensors",
649
+ "model.layers.73.mlp.down_proj.weight": "model-00009-of-00009.safetensors",
650
+ "model.layers.73.mlp.gate_proj.weight": "model-00009-of-00009.safetensors",
651
+ "model.layers.73.mlp.up_proj.weight": "model-00009-of-00009.safetensors",
652
+ "model.layers.73.post_attention_layernorm.weight": "model-00009-of-00009.safetensors",
653
+ "model.layers.73.self_attn.k_proj.weight": "model-00009-of-00009.safetensors",
654
+ "model.layers.73.self_attn.o_proj.weight": "model-00009-of-00009.safetensors",
655
+ "model.layers.73.self_attn.q_proj.weight": "model-00009-of-00009.safetensors",
656
+ "model.layers.73.self_attn.v_proj.weight": "model-00009-of-00009.safetensors",
657
+ "model.layers.74.input_layernorm.weight": "model-00009-of-00009.safetensors",
658
+ "model.layers.74.mlp.down_proj.weight": "model-00009-of-00009.safetensors",
659
+ "model.layers.74.mlp.gate_proj.weight": "model-00009-of-00009.safetensors",
660
+ "model.layers.74.mlp.up_proj.weight": "model-00009-of-00009.safetensors",
661
+ "model.layers.74.post_attention_layernorm.weight": "model-00009-of-00009.safetensors",
662
+ "model.layers.74.self_attn.k_proj.weight": "model-00009-of-00009.safetensors",
663
+ "model.layers.74.self_attn.o_proj.weight": "model-00009-of-00009.safetensors",
664
+ "model.layers.74.self_attn.q_proj.weight": "model-00009-of-00009.safetensors",
665
+ "model.layers.74.self_attn.v_proj.weight": "model-00009-of-00009.safetensors",
666
+ "model.layers.75.input_layernorm.weight": "model-00009-of-00009.safetensors",
667
+ "model.layers.75.mlp.down_proj.weight": "model-00009-of-00009.safetensors",
668
+ "model.layers.75.mlp.gate_proj.weight": "model-00009-of-00009.safetensors",
669
+ "model.layers.75.mlp.up_proj.weight": "model-00009-of-00009.safetensors",
670
+ "model.layers.75.post_attention_layernorm.weight": "model-00009-of-00009.safetensors",
671
+ "model.layers.75.self_attn.k_proj.weight": "model-00009-of-00009.safetensors",
672
+ "model.layers.75.self_attn.o_proj.weight": "model-00009-of-00009.safetensors",
673
+ "model.layers.75.self_attn.q_proj.weight": "model-00009-of-00009.safetensors",
674
+ "model.layers.75.self_attn.v_proj.weight": "model-00009-of-00009.safetensors",
675
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00009.safetensors",
676
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00009.safetensors",
677
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00009.safetensors",
678
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00009.safetensors",
679
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
680
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
681
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
682
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
683
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
684
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00009.safetensors",
685
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00009.safetensors",
686
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00009.safetensors",
687
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00009.safetensors",
688
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
689
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
690
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
691
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
692
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
693
+ "model.norm.weight": "model-00009-of-00009.safetensors"
694
+ }
695
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc7a5d9ca652a5bd1d04349d77fd0f56f8f1775e1b00b5cc5176468e017ac92a
3
+ size 16389
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3bd450366f4274a04e6d5dd0754dcf816f88f65b85ed9c88a1d081c89aada859
3
+ size 16389
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a77d0583487d8cfff2e76df0532730c5485b42767b1ed8f4969f22094d840e3
3
+ size 16389
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfc063696020bbba4af73e5ff59ec7700b0b1cdad96c500dc21ee7ad1944a49f
3
+ size 16389
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6eef58bc47946544af1ba531a8c236e1942654ee216ea13ace82cce27989f69
3
+ size 16389
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1817a933eaa47c02483f98f317c6922afa277826ec0331b0e7b317b1a450ede
3
+ size 16389
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9879f2fc500918bc865d70f89366cd6d137a38668bd679637ef9fb550fc7ed7a
3
+ size 16389
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6dbd587ebbf015d1ccd7042d123702b4ff325bb586cf67ebe78a6992b029aa9a
3
+ size 16389
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c6a135c2fb72390422613b4a41730a83d024a52688dd46e22c1c928bd8711ed
3
+ size 1465
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<pad>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0240ce510f08e6c2041724e9043e33be9d251d1e4a4d94eb68cd47b954b61d2
3
+ size 17078292
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
trainer_state.json ADDED
@@ -0,0 +1,1154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.9984399375975039,
6
+ "eval_steps": 500,
7
+ "global_step": 160,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0062402496099844,
14
+ "grad_norm": 10.74402992025825,
15
+ "learning_rate": 4.0000000000000003e-07,
16
+ "loss": 2.0885,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.0124804992199688,
21
+ "grad_norm": 10.414041822411015,
22
+ "learning_rate": 8.000000000000001e-07,
23
+ "loss": 2.0268,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.0187207488299532,
28
+ "grad_norm": 9.463277664294495,
29
+ "learning_rate": 1.2000000000000002e-06,
30
+ "loss": 2.0224,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.0249609984399376,
35
+ "grad_norm": 3.816015682685396,
36
+ "learning_rate": 1.6000000000000001e-06,
37
+ "loss": 2.0739,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.031201248049921998,
42
+ "grad_norm": 2.45701507391519,
43
+ "learning_rate": 2e-06,
44
+ "loss": 2.0331,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.0374414976599064,
49
+ "grad_norm": 2.2119224271122664,
50
+ "learning_rate": 2.4000000000000003e-06,
51
+ "loss": 2.0191,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.0436817472698908,
56
+ "grad_norm": 2.282301056375637,
57
+ "learning_rate": 2.8000000000000003e-06,
58
+ "loss": 1.9805,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.0499219968798752,
63
+ "grad_norm": 2.8111235551059672,
64
+ "learning_rate": 3.2000000000000003e-06,
65
+ "loss": 2.0581,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.056162246489859596,
70
+ "grad_norm": 2.290032450883113,
71
+ "learning_rate": 3.6000000000000003e-06,
72
+ "loss": 2.0564,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.062402496099843996,
77
+ "grad_norm": 2.7448772203230587,
78
+ "learning_rate": 4e-06,
79
+ "loss": 2.0477,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.0686427457098284,
84
+ "grad_norm": 2.426609984220206,
85
+ "learning_rate": 4.4e-06,
86
+ "loss": 2.021,
87
+ "step": 11
88
+ },
89
+ {
90
+ "epoch": 0.0748829953198128,
91
+ "grad_norm": 2.8668649784307085,
92
+ "learning_rate": 4.800000000000001e-06,
93
+ "loss": 2.0695,
94
+ "step": 12
95
+ },
96
+ {
97
+ "epoch": 0.0811232449297972,
98
+ "grad_norm": 3.3242641740190484,
99
+ "learning_rate": 5.200000000000001e-06,
100
+ "loss": 2.0124,
101
+ "step": 13
102
+ },
103
+ {
104
+ "epoch": 0.0873634945397816,
105
+ "grad_norm": 2.61279395903613,
106
+ "learning_rate": 5.600000000000001e-06,
107
+ "loss": 2.1133,
108
+ "step": 14
109
+ },
110
+ {
111
+ "epoch": 0.093603744149766,
112
+ "grad_norm": 5.14184681992228,
113
+ "learning_rate": 6e-06,
114
+ "loss": 2.043,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.0998439937597504,
119
+ "grad_norm": 2.8607405485409276,
120
+ "learning_rate": 6.4000000000000006e-06,
121
+ "loss": 2.0186,
122
+ "step": 16
123
+ },
124
+ {
125
+ "epoch": 0.1060842433697348,
126
+ "grad_norm": 3.907631913383047,
127
+ "learning_rate": 6.8e-06,
128
+ "loss": 2.0141,
129
+ "step": 17
130
+ },
131
+ {
132
+ "epoch": 0.11232449297971919,
133
+ "grad_norm": 2.6838896552707014,
134
+ "learning_rate": 7.2000000000000005e-06,
135
+ "loss": 2.0818,
136
+ "step": 18
137
+ },
138
+ {
139
+ "epoch": 0.11856474258970359,
140
+ "grad_norm": 3.6972529763342337,
141
+ "learning_rate": 7.6e-06,
142
+ "loss": 2.0148,
143
+ "step": 19
144
+ },
145
+ {
146
+ "epoch": 0.12480499219968799,
147
+ "grad_norm": 2.887987766429437,
148
+ "learning_rate": 8e-06,
149
+ "loss": 1.9952,
150
+ "step": 20
151
+ },
152
+ {
153
+ "epoch": 0.1310452418096724,
154
+ "grad_norm": 3.507471022279554,
155
+ "learning_rate": 8.400000000000001e-06,
156
+ "loss": 2.0801,
157
+ "step": 21
158
+ },
159
+ {
160
+ "epoch": 0.1372854914196568,
161
+ "grad_norm": 1.8196990054764854,
162
+ "learning_rate": 8.8e-06,
163
+ "loss": 2.0431,
164
+ "step": 22
165
+ },
166
+ {
167
+ "epoch": 0.1435257410296412,
168
+ "grad_norm": 4.634858392717085,
169
+ "learning_rate": 9.2e-06,
170
+ "loss": 2.0264,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.1497659906396256,
175
+ "grad_norm": 3.62013301472126,
176
+ "learning_rate": 9.600000000000001e-06,
177
+ "loss": 2.0417,
178
+ "step": 24
179
+ },
180
+ {
181
+ "epoch": 0.15600624024961,
182
+ "grad_norm": 3.8817500707011305,
183
+ "learning_rate": 1e-05,
184
+ "loss": 2.0338,
185
+ "step": 25
186
+ },
187
+ {
188
+ "epoch": 0.1622464898595944,
189
+ "grad_norm": 4.087718448832571,
190
+ "learning_rate": 1.0400000000000002e-05,
191
+ "loss": 1.9754,
192
+ "step": 26
193
+ },
194
+ {
195
+ "epoch": 0.1684867394695788,
196
+ "grad_norm": 3.0490578592864828,
197
+ "learning_rate": 1.08e-05,
198
+ "loss": 2.0386,
199
+ "step": 27
200
+ },
201
+ {
202
+ "epoch": 0.1747269890795632,
203
+ "grad_norm": 2.9939386802357517,
204
+ "learning_rate": 1.1200000000000001e-05,
205
+ "loss": 2.0044,
206
+ "step": 28
207
+ },
208
+ {
209
+ "epoch": 0.1809672386895476,
210
+ "grad_norm": 3.935708629623511,
211
+ "learning_rate": 1.16e-05,
212
+ "loss": 2.0386,
213
+ "step": 29
214
+ },
215
+ {
216
+ "epoch": 0.187207488299532,
217
+ "grad_norm": 3.3632255605488686,
218
+ "learning_rate": 1.2e-05,
219
+ "loss": 2.0736,
220
+ "step": 30
221
+ },
222
+ {
223
+ "epoch": 0.1934477379095164,
224
+ "grad_norm": 4.075768572911316,
225
+ "learning_rate": 1.24e-05,
226
+ "loss": 2.0516,
227
+ "step": 31
228
+ },
229
+ {
230
+ "epoch": 0.1996879875195008,
231
+ "grad_norm": 1.9953301732913695,
232
+ "learning_rate": 1.2800000000000001e-05,
233
+ "loss": 2.0221,
234
+ "step": 32
235
+ },
236
+ {
237
+ "epoch": 0.2059282371294852,
238
+ "grad_norm": 5.026680509494266,
239
+ "learning_rate": 1.3200000000000002e-05,
240
+ "loss": 1.9922,
241
+ "step": 33
242
+ },
243
+ {
244
+ "epoch": 0.2121684867394696,
245
+ "grad_norm": 3.335169761696431,
246
+ "learning_rate": 1.36e-05,
247
+ "loss": 2.0422,
248
+ "step": 34
249
+ },
250
+ {
251
+ "epoch": 0.21840873634945399,
252
+ "grad_norm": 4.139988627533733,
253
+ "learning_rate": 1.4000000000000001e-05,
254
+ "loss": 2.0286,
255
+ "step": 35
256
+ },
257
+ {
258
+ "epoch": 0.22464898595943839,
259
+ "grad_norm": 3.7359622657764002,
260
+ "learning_rate": 1.4400000000000001e-05,
261
+ "loss": 2.0034,
262
+ "step": 36
263
+ },
264
+ {
265
+ "epoch": 0.23088923556942278,
266
+ "grad_norm": 3.2432139656379233,
267
+ "learning_rate": 1.4800000000000002e-05,
268
+ "loss": 2.0811,
269
+ "step": 37
270
+ },
271
+ {
272
+ "epoch": 0.23712948517940718,
273
+ "grad_norm": 2.6586955034097532,
274
+ "learning_rate": 1.52e-05,
275
+ "loss": 2.02,
276
+ "step": 38
277
+ },
278
+ {
279
+ "epoch": 0.24336973478939158,
280
+ "grad_norm": 4.013453056484069,
281
+ "learning_rate": 1.5600000000000003e-05,
282
+ "loss": 1.9795,
283
+ "step": 39
284
+ },
285
+ {
286
+ "epoch": 0.24960998439937598,
287
+ "grad_norm": 2.521776704363988,
288
+ "learning_rate": 1.6e-05,
289
+ "loss": 1.9903,
290
+ "step": 40
291
+ },
292
+ {
293
+ "epoch": 0.25585023400936036,
294
+ "grad_norm": 4.065575685396291,
295
+ "learning_rate": 1.6400000000000002e-05,
296
+ "loss": 2.0221,
297
+ "step": 41
298
+ },
299
+ {
300
+ "epoch": 0.2620904836193448,
301
+ "grad_norm": 3.5403076970966643,
302
+ "learning_rate": 1.6800000000000002e-05,
303
+ "loss": 2.0709,
304
+ "step": 42
305
+ },
306
+ {
307
+ "epoch": 0.26833073322932915,
308
+ "grad_norm": 3.702151042696706,
309
+ "learning_rate": 1.72e-05,
310
+ "loss": 2.0208,
311
+ "step": 43
312
+ },
313
+ {
314
+ "epoch": 0.2745709828393136,
315
+ "grad_norm": 2.591541370214587,
316
+ "learning_rate": 1.76e-05,
317
+ "loss": 2.0225,
318
+ "step": 44
319
+ },
320
+ {
321
+ "epoch": 0.28081123244929795,
322
+ "grad_norm": 3.486718721357557,
323
+ "learning_rate": 1.8e-05,
324
+ "loss": 2.0365,
325
+ "step": 45
326
+ },
327
+ {
328
+ "epoch": 0.2870514820592824,
329
+ "grad_norm": 4.953839109375147,
330
+ "learning_rate": 1.84e-05,
331
+ "loss": 2.0201,
332
+ "step": 46
333
+ },
334
+ {
335
+ "epoch": 0.29329173166926675,
336
+ "grad_norm": 3.293398181575717,
337
+ "learning_rate": 1.8800000000000003e-05,
338
+ "loss": 2.0134,
339
+ "step": 47
340
+ },
341
+ {
342
+ "epoch": 0.2995319812792512,
343
+ "grad_norm": 5.579089802583317,
344
+ "learning_rate": 1.9200000000000003e-05,
345
+ "loss": 1.9558,
346
+ "step": 48
347
+ },
348
+ {
349
+ "epoch": 0.30577223088923555,
350
+ "grad_norm": 4.544122172306774,
351
+ "learning_rate": 1.9600000000000002e-05,
352
+ "loss": 1.9454,
353
+ "step": 49
354
+ },
355
+ {
356
+ "epoch": 0.31201248049922,
357
+ "grad_norm": 5.4447638064914985,
358
+ "learning_rate": 2e-05,
359
+ "loss": 2.0016,
360
+ "step": 50
361
+ },
362
+ {
363
+ "epoch": 0.31825273010920435,
364
+ "grad_norm": 9.597372129578162,
365
+ "learning_rate": 1.9981668194317142e-05,
366
+ "loss": 1.9972,
367
+ "step": 51
368
+ },
369
+ {
370
+ "epoch": 0.3244929797191888,
371
+ "grad_norm": 27.057608263740534,
372
+ "learning_rate": 1.9963031423290204e-05,
373
+ "loss": 2.0419,
374
+ "step": 52
375
+ },
376
+ {
377
+ "epoch": 0.33073322932917315,
378
+ "grad_norm": 7.246050894562496,
379
+ "learning_rate": 1.994408201304753e-05,
380
+ "loss": 2.03,
381
+ "step": 53
382
+ },
383
+ {
384
+ "epoch": 0.3369734789391576,
385
+ "grad_norm": 11.339707951526051,
386
+ "learning_rate": 1.9924812030075188e-05,
387
+ "loss": 2.0708,
388
+ "step": 54
389
+ },
390
+ {
391
+ "epoch": 0.34321372854914195,
392
+ "grad_norm": 54.33866443144764,
393
+ "learning_rate": 1.9905213270142184e-05,
394
+ "loss": 2.1948,
395
+ "step": 55
396
+ },
397
+ {
398
+ "epoch": 0.3494539781591264,
399
+ "grad_norm": 10.82899390141888,
400
+ "learning_rate": 1.988527724665392e-05,
401
+ "loss": 2.1432,
402
+ "step": 56
403
+ },
404
+ {
405
+ "epoch": 0.35569422776911075,
406
+ "grad_norm": 4.067023362710712,
407
+ "learning_rate": 1.986499517839923e-05,
408
+ "loss": 2.0887,
409
+ "step": 57
410
+ },
411
+ {
412
+ "epoch": 0.3619344773790952,
413
+ "grad_norm": 5.822340342195218,
414
+ "learning_rate": 1.9844357976653696e-05,
415
+ "loss": 2.0353,
416
+ "step": 58
417
+ },
418
+ {
419
+ "epoch": 0.36817472698907955,
420
+ "grad_norm": 3.5192080522606117,
421
+ "learning_rate": 1.9823356231599608e-05,
422
+ "loss": 2.0402,
423
+ "step": 59
424
+ },
425
+ {
426
+ "epoch": 0.374414976599064,
427
+ "grad_norm": 4.0093539975984065,
428
+ "learning_rate": 1.9801980198019806e-05,
429
+ "loss": 2.0968,
430
+ "step": 60
431
+ },
432
+ {
433
+ "epoch": 0.38065522620904835,
434
+ "grad_norm": 3.248210484978779,
435
+ "learning_rate": 1.9780219780219784e-05,
436
+ "loss": 2.0698,
437
+ "step": 61
438
+ },
439
+ {
440
+ "epoch": 0.3868954758190328,
441
+ "grad_norm": 9.86816642625139,
442
+ "learning_rate": 1.9758064516129035e-05,
443
+ "loss": 2.1396,
444
+ "step": 62
445
+ },
446
+ {
447
+ "epoch": 0.39313572542901715,
448
+ "grad_norm": 6.803518728015235,
449
+ "learning_rate": 1.9735503560528995e-05,
450
+ "loss": 2.0915,
451
+ "step": 63
452
+ },
453
+ {
454
+ "epoch": 0.3993759750390016,
455
+ "grad_norm": 9.116753527737151,
456
+ "learning_rate": 1.9712525667351133e-05,
457
+ "loss": 2.1454,
458
+ "step": 64
459
+ },
460
+ {
461
+ "epoch": 0.40561622464898595,
462
+ "grad_norm": 5.696843981671945,
463
+ "learning_rate": 1.9689119170984456e-05,
464
+ "loss": 2.1245,
465
+ "step": 65
466
+ },
467
+ {
468
+ "epoch": 0.4118564742589704,
469
+ "grad_norm": 14.915888442988669,
470
+ "learning_rate": 1.96652719665272e-05,
471
+ "loss": 2.121,
472
+ "step": 66
473
+ },
474
+ {
475
+ "epoch": 0.41809672386895474,
476
+ "grad_norm": 96.78241254851471,
477
+ "learning_rate": 1.9640971488912355e-05,
478
+ "loss": 2.3768,
479
+ "step": 67
480
+ },
481
+ {
482
+ "epoch": 0.4243369734789392,
483
+ "grad_norm": 11.648041872276787,
484
+ "learning_rate": 1.961620469083156e-05,
485
+ "loss": 2.2285,
486
+ "step": 68
487
+ },
488
+ {
489
+ "epoch": 0.43057722308892354,
490
+ "grad_norm": 7.174165495387168,
491
+ "learning_rate": 1.9590958019375676e-05,
492
+ "loss": 2.1671,
493
+ "step": 69
494
+ },
495
+ {
496
+ "epoch": 0.43681747269890797,
497
+ "grad_norm": 6.48742758649308,
498
+ "learning_rate": 1.956521739130435e-05,
499
+ "loss": 2.1101,
500
+ "step": 70
501
+ },
502
+ {
503
+ "epoch": 0.44305772230889234,
504
+ "grad_norm": 3.8309613955567263,
505
+ "learning_rate": 1.953896816684962e-05,
506
+ "loss": 2.1285,
507
+ "step": 71
508
+ },
509
+ {
510
+ "epoch": 0.44929797191887677,
511
+ "grad_norm": 4.383193420557969,
512
+ "learning_rate": 1.9512195121951222e-05,
513
+ "loss": 2.1133,
514
+ "step": 72
515
+ },
516
+ {
517
+ "epoch": 0.45553822152886114,
518
+ "grad_norm": 3.9756337036474765,
519
+ "learning_rate": 1.9484882418812992e-05,
520
+ "loss": 2.05,
521
+ "step": 73
522
+ },
523
+ {
524
+ "epoch": 0.46177847113884557,
525
+ "grad_norm": 2.628853316257943,
526
+ "learning_rate": 1.9457013574660635e-05,
527
+ "loss": 2.0764,
528
+ "step": 74
529
+ },
530
+ {
531
+ "epoch": 0.46801872074882994,
532
+ "grad_norm": 3.9077882447399372,
533
+ "learning_rate": 1.942857142857143e-05,
534
+ "loss": 2.0569,
535
+ "step": 75
536
+ },
537
+ {
538
+ "epoch": 0.47425897035881437,
539
+ "grad_norm": 2.153564772831578,
540
+ "learning_rate": 1.9399538106235567e-05,
541
+ "loss": 1.9753,
542
+ "step": 76
543
+ },
544
+ {
545
+ "epoch": 0.48049921996879874,
546
+ "grad_norm": 3.2742987852933907,
547
+ "learning_rate": 1.9369894982497083e-05,
548
+ "loss": 2.0728,
549
+ "step": 77
550
+ },
551
+ {
552
+ "epoch": 0.48673946957878317,
553
+ "grad_norm": 3.0871656421066236,
554
+ "learning_rate": 1.9339622641509436e-05,
555
+ "loss": 2.0725,
556
+ "step": 78
557
+ },
558
+ {
559
+ "epoch": 0.49297971918876754,
560
+ "grad_norm": 4.974500703202643,
561
+ "learning_rate": 1.9308700834326583e-05,
562
+ "loss": 2.0574,
563
+ "step": 79
564
+ },
565
+ {
566
+ "epoch": 0.49921996879875197,
567
+ "grad_norm": 1.9848768489870379,
568
+ "learning_rate": 1.9277108433734944e-05,
569
+ "loss": 2.039,
570
+ "step": 80
571
+ },
572
+ {
573
+ "epoch": 0.5054602184087363,
574
+ "grad_norm": 3.675535765562546,
575
+ "learning_rate": 1.9244823386114496e-05,
576
+ "loss": 2.0498,
577
+ "step": 81
578
+ },
579
+ {
580
+ "epoch": 0.5117004680187207,
581
+ "grad_norm": 3.646020776409229,
582
+ "learning_rate": 1.9211822660098524e-05,
583
+ "loss": 2.09,
584
+ "step": 82
585
+ },
586
+ {
587
+ "epoch": 0.5179407176287052,
588
+ "grad_norm": 3.2885099554782,
589
+ "learning_rate": 1.9178082191780822e-05,
590
+ "loss": 2.0594,
591
+ "step": 83
592
+ },
593
+ {
594
+ "epoch": 0.5241809672386896,
595
+ "grad_norm": 3.86257607313755,
596
+ "learning_rate": 1.9143576826196474e-05,
597
+ "loss": 2.0982,
598
+ "step": 84
599
+ },
600
+ {
601
+ "epoch": 0.5304212168486739,
602
+ "grad_norm": 2.9398571293411337,
603
+ "learning_rate": 1.9108280254777068e-05,
604
+ "loss": 2.0192,
605
+ "step": 85
606
+ },
607
+ {
608
+ "epoch": 0.5366614664586583,
609
+ "grad_norm": 5.691015626741047,
610
+ "learning_rate": 1.907216494845361e-05,
611
+ "loss": 2.0719,
612
+ "step": 86
613
+ },
614
+ {
615
+ "epoch": 0.5429017160686428,
616
+ "grad_norm": 3.2393091526236204,
617
+ "learning_rate": 1.9035202086049548e-05,
618
+ "loss": 2.0201,
619
+ "step": 87
620
+ },
621
+ {
622
+ "epoch": 0.5491419656786272,
623
+ "grad_norm": 7.878611924949738,
624
+ "learning_rate": 1.899736147757256e-05,
625
+ "loss": 2.0513,
626
+ "step": 88
627
+ },
628
+ {
629
+ "epoch": 0.5553822152886115,
630
+ "grad_norm": 5.586452362544675,
631
+ "learning_rate": 1.895861148197597e-05,
632
+ "loss": 2.008,
633
+ "step": 89
634
+ },
635
+ {
636
+ "epoch": 0.5616224648985959,
637
+ "grad_norm": 6.366113686688125,
638
+ "learning_rate": 1.891891891891892e-05,
639
+ "loss": 2.0222,
640
+ "step": 90
641
+ },
642
+ {
643
+ "epoch": 0.5678627145085804,
644
+ "grad_norm": 5.5469754048863305,
645
+ "learning_rate": 1.887824897400821e-05,
646
+ "loss": 2.0377,
647
+ "step": 91
648
+ },
649
+ {
650
+ "epoch": 0.5741029641185648,
651
+ "grad_norm": 4.927264399708736,
652
+ "learning_rate": 1.883656509695291e-05,
653
+ "loss": 2.0055,
654
+ "step": 92
655
+ },
656
+ {
657
+ "epoch": 0.5803432137285491,
658
+ "grad_norm": 4.400828802773919,
659
+ "learning_rate": 1.8793828892005612e-05,
660
+ "loss": 2.0385,
661
+ "step": 93
662
+ },
663
+ {
664
+ "epoch": 0.5865834633385335,
665
+ "grad_norm": 5.1654734914491,
666
+ "learning_rate": 1.8750000000000002e-05,
667
+ "loss": 2.033,
668
+ "step": 94
669
+ },
670
+ {
671
+ "epoch": 0.592823712948518,
672
+ "grad_norm": 2.8256214952031224,
673
+ "learning_rate": 1.8705035971223024e-05,
674
+ "loss": 2.0456,
675
+ "step": 95
676
+ },
677
+ {
678
+ "epoch": 0.5990639625585024,
679
+ "grad_norm": 5.945292262432217,
680
+ "learning_rate": 1.8658892128279884e-05,
681
+ "loss": 2.0766,
682
+ "step": 96
683
+ },
684
+ {
685
+ "epoch": 0.6053042121684867,
686
+ "grad_norm": 3.1462260207166923,
687
+ "learning_rate": 1.861152141802068e-05,
688
+ "loss": 2.0502,
689
+ "step": 97
690
+ },
691
+ {
692
+ "epoch": 0.6115444617784711,
693
+ "grad_norm": 6.002424537736364,
694
+ "learning_rate": 1.8562874251497008e-05,
695
+ "loss": 2.0255,
696
+ "step": 98
697
+ },
698
+ {
699
+ "epoch": 0.6177847113884556,
700
+ "grad_norm": 4.92987161539047,
701
+ "learning_rate": 1.851289833080425e-05,
702
+ "loss": 2.0076,
703
+ "step": 99
704
+ },
705
+ {
706
+ "epoch": 0.62402496099844,
707
+ "grad_norm": 4.302040549632859,
708
+ "learning_rate": 1.846153846153846e-05,
709
+ "loss": 2.0523,
710
+ "step": 100
711
+ },
712
+ {
713
+ "epoch": 0.6302652106084243,
714
+ "grad_norm": 2.838409708113077,
715
+ "learning_rate": 1.840873634945398e-05,
716
+ "loss": 1.9646,
717
+ "step": 101
718
+ },
719
+ {
720
+ "epoch": 0.6365054602184087,
721
+ "grad_norm": 3.295108362363732,
722
+ "learning_rate": 1.8354430379746836e-05,
723
+ "loss": 1.9575,
724
+ "step": 102
725
+ },
726
+ {
727
+ "epoch": 0.6427457098283932,
728
+ "grad_norm": 2.2894649638697557,
729
+ "learning_rate": 1.8298555377207063e-05,
730
+ "loss": 1.9964,
731
+ "step": 103
732
+ },
733
+ {
734
+ "epoch": 0.6489859594383776,
735
+ "grad_norm": 3.7807867883237343,
736
+ "learning_rate": 1.8241042345276876e-05,
737
+ "loss": 1.9929,
738
+ "step": 104
739
+ },
740
+ {
741
+ "epoch": 0.6552262090483619,
742
+ "grad_norm": 3.5213953795099817,
743
+ "learning_rate": 1.8181818181818182e-05,
744
+ "loss": 2.0305,
745
+ "step": 105
746
+ },
747
+ {
748
+ "epoch": 0.6614664586583463,
749
+ "grad_norm": 3.180581118333888,
750
+ "learning_rate": 1.8120805369127517e-05,
751
+ "loss": 2.0,
752
+ "step": 106
753
+ },
754
+ {
755
+ "epoch": 0.6677067082683308,
756
+ "grad_norm": 3.7407765148739154,
757
+ "learning_rate": 1.8057921635434413e-05,
758
+ "loss": 1.9947,
759
+ "step": 107
760
+ },
761
+ {
762
+ "epoch": 0.6739469578783152,
763
+ "grad_norm": 2.4800887886136302,
764
+ "learning_rate": 1.7993079584775085e-05,
765
+ "loss": 1.945,
766
+ "step": 108
767
+ },
768
+ {
769
+ "epoch": 0.6801872074882995,
770
+ "grad_norm": 2.280159270411404,
771
+ "learning_rate": 1.792618629173989e-05,
772
+ "loss": 2.0461,
773
+ "step": 109
774
+ },
775
+ {
776
+ "epoch": 0.6864274570982839,
777
+ "grad_norm": 1.8103075862546911,
778
+ "learning_rate": 1.785714285714286e-05,
779
+ "loss": 2.0384,
780
+ "step": 110
781
+ },
782
+ {
783
+ "epoch": 0.6926677067082684,
784
+ "grad_norm": 2.7530066817239116,
785
+ "learning_rate": 1.7785843920145195e-05,
786
+ "loss": 2.0422,
787
+ "step": 111
788
+ },
789
+ {
790
+ "epoch": 0.6989079563182528,
791
+ "grad_norm": 2.385559179108808,
792
+ "learning_rate": 1.771217712177122e-05,
793
+ "loss": 2.0201,
794
+ "step": 112
795
+ },
796
+ {
797
+ "epoch": 0.7051482059282371,
798
+ "grad_norm": 3.4132861718816656,
799
+ "learning_rate": 1.7636022514071294e-05,
800
+ "loss": 2.0059,
801
+ "step": 113
802
+ },
803
+ {
804
+ "epoch": 0.7113884555382215,
805
+ "grad_norm": 1.9687493474305817,
806
+ "learning_rate": 1.755725190839695e-05,
807
+ "loss": 1.9424,
808
+ "step": 114
809
+ },
810
+ {
811
+ "epoch": 0.717628705148206,
812
+ "grad_norm": 3.3664419654172812,
813
+ "learning_rate": 1.7475728155339808e-05,
814
+ "loss": 1.9917,
815
+ "step": 115
816
+ },
817
+ {
818
+ "epoch": 0.7238689547581904,
819
+ "grad_norm": 1.7453289663664593,
820
+ "learning_rate": 1.7391304347826085e-05,
821
+ "loss": 1.9943,
822
+ "step": 116
823
+ },
824
+ {
825
+ "epoch": 0.7301092043681747,
826
+ "grad_norm": 3.513395200138233,
827
+ "learning_rate": 1.7303822937625752e-05,
828
+ "loss": 2.0497,
829
+ "step": 117
830
+ },
831
+ {
832
+ "epoch": 0.7363494539781591,
833
+ "grad_norm": 2.680135793492889,
834
+ "learning_rate": 1.721311475409836e-05,
835
+ "loss": 2.0534,
836
+ "step": 118
837
+ },
838
+ {
839
+ "epoch": 0.7425897035881436,
840
+ "grad_norm": 2.921520804571559,
841
+ "learning_rate": 1.711899791231733e-05,
842
+ "loss": 1.9642,
843
+ "step": 119
844
+ },
845
+ {
846
+ "epoch": 0.748829953198128,
847
+ "grad_norm": 2.3783552559811594,
848
+ "learning_rate": 1.7021276595744686e-05,
849
+ "loss": 2.0363,
850
+ "step": 120
851
+ },
852
+ {
853
+ "epoch": 0.7550702028081123,
854
+ "grad_norm": 3.4009796330846567,
855
+ "learning_rate": 1.691973969631237e-05,
856
+ "loss": 2.0112,
857
+ "step": 121
858
+ },
859
+ {
860
+ "epoch": 0.7613104524180967,
861
+ "grad_norm": 3.173059834064885,
862
+ "learning_rate": 1.6814159292035402e-05,
863
+ "loss": 2.036,
864
+ "step": 122
865
+ },
866
+ {
867
+ "epoch": 0.7675507020280812,
868
+ "grad_norm": 1.9816975235472727,
869
+ "learning_rate": 1.670428893905192e-05,
870
+ "loss": 2.0391,
871
+ "step": 123
872
+ },
873
+ {
874
+ "epoch": 0.7737909516380655,
875
+ "grad_norm": 2.3017687165242755,
876
+ "learning_rate": 1.6589861751152075e-05,
877
+ "loss": 2.0232,
878
+ "step": 124
879
+ },
880
+ {
881
+ "epoch": 0.7800312012480499,
882
+ "grad_norm": 2.094432126031965,
883
+ "learning_rate": 1.647058823529412e-05,
884
+ "loss": 2.0496,
885
+ "step": 125
886
+ },
887
+ {
888
+ "epoch": 0.7862714508580343,
889
+ "grad_norm": 4.369204228615871,
890
+ "learning_rate": 1.6346153846153847e-05,
891
+ "loss": 1.995,
892
+ "step": 126
893
+ },
894
+ {
895
+ "epoch": 0.7925117004680188,
896
+ "grad_norm": 2.707513968938277,
897
+ "learning_rate": 1.6216216216216215e-05,
898
+ "loss": 2.0909,
899
+ "step": 127
900
+ },
901
+ {
902
+ "epoch": 0.7987519500780031,
903
+ "grad_norm": 3.3723262775787437,
904
+ "learning_rate": 1.608040201005025e-05,
905
+ "loss": 2.0436,
906
+ "step": 128
907
+ },
908
+ {
909
+ "epoch": 0.8049921996879875,
910
+ "grad_norm": 4.542572647672642,
911
+ "learning_rate": 1.5938303341902316e-05,
912
+ "loss": 2.0467,
913
+ "step": 129
914
+ },
915
+ {
916
+ "epoch": 0.8112324492979719,
917
+ "grad_norm": 2.752970144346649,
918
+ "learning_rate": 1.5789473684210526e-05,
919
+ "loss": 2.026,
920
+ "step": 130
921
+ },
922
+ {
923
+ "epoch": 0.8174726989079563,
924
+ "grad_norm": 5.8547013314456695,
925
+ "learning_rate": 1.5633423180592992e-05,
926
+ "loss": 2.0379,
927
+ "step": 131
928
+ },
929
+ {
930
+ "epoch": 0.8237129485179407,
931
+ "grad_norm": 3.6188017739630824,
932
+ "learning_rate": 1.5469613259668508e-05,
933
+ "loss": 1.9989,
934
+ "step": 132
935
+ },
936
+ {
937
+ "epoch": 0.8299531981279251,
938
+ "grad_norm": 7.450963398151789,
939
+ "learning_rate": 1.529745042492918e-05,
940
+ "loss": 1.9937,
941
+ "step": 133
942
+ },
943
+ {
944
+ "epoch": 0.8361934477379095,
945
+ "grad_norm": 6.338885342053262,
946
+ "learning_rate": 1.5116279069767441e-05,
947
+ "loss": 2.0268,
948
+ "step": 134
949
+ },
950
+ {
951
+ "epoch": 0.8424336973478939,
952
+ "grad_norm": 4.068350711677805,
953
+ "learning_rate": 1.4925373134328359e-05,
954
+ "loss": 2.0657,
955
+ "step": 135
956
+ },
957
+ {
958
+ "epoch": 0.8486739469578783,
959
+ "grad_norm": 5.595793283481958,
960
+ "learning_rate": 1.4723926380368096e-05,
961
+ "loss": 2.0018,
962
+ "step": 136
963
+ },
964
+ {
965
+ "epoch": 0.8549141965678627,
966
+ "grad_norm": 2.188112379086696,
967
+ "learning_rate": 1.4511041009463722e-05,
968
+ "loss": 1.9973,
969
+ "step": 137
970
+ },
971
+ {
972
+ "epoch": 0.8611544461778471,
973
+ "grad_norm": 2.712340447399982,
974
+ "learning_rate": 1.4285714285714287e-05,
975
+ "loss": 1.9837,
976
+ "step": 138
977
+ },
978
+ {
979
+ "epoch": 0.8673946957878315,
980
+ "grad_norm": 4.524782432904714,
981
+ "learning_rate": 1.4046822742474917e-05,
982
+ "loss": 1.9805,
983
+ "step": 139
984
+ },
985
+ {
986
+ "epoch": 0.8736349453978159,
987
+ "grad_norm": 2.5304287757872026,
988
+ "learning_rate": 1.3793103448275862e-05,
989
+ "loss": 2.0088,
990
+ "step": 140
991
+ },
992
+ {
993
+ "epoch": 0.8798751950078003,
994
+ "grad_norm": 5.924048202005877,
995
+ "learning_rate": 1.3523131672597865e-05,
996
+ "loss": 1.9997,
997
+ "step": 141
998
+ },
999
+ {
1000
+ "epoch": 0.8861154446177847,
1001
+ "grad_norm": 5.465435613727891,
1002
+ "learning_rate": 1.323529411764706e-05,
1003
+ "loss": 1.9556,
1004
+ "step": 142
1005
+ },
1006
+ {
1007
+ "epoch": 0.8923556942277691,
1008
+ "grad_norm": 3.404337115153408,
1009
+ "learning_rate": 1.2927756653992395e-05,
1010
+ "loss": 2.0268,
1011
+ "step": 143
1012
+ },
1013
+ {
1014
+ "epoch": 0.8985959438377535,
1015
+ "grad_norm": 4.2172697858979165,
1016
+ "learning_rate": 1.2598425196850392e-05,
1017
+ "loss": 1.9997,
1018
+ "step": 144
1019
+ },
1020
+ {
1021
+ "epoch": 0.9048361934477379,
1022
+ "grad_norm": 2.4532813229494255,
1023
+ "learning_rate": 1.2244897959183674e-05,
1024
+ "loss": 2.0326,
1025
+ "step": 145
1026
+ },
1027
+ {
1028
+ "epoch": 0.9110764430577223,
1029
+ "grad_norm": 1.9619593022855364,
1030
+ "learning_rate": 1.1864406779661018e-05,
1031
+ "loss": 1.9498,
1032
+ "step": 146
1033
+ },
1034
+ {
1035
+ "epoch": 0.9173166926677067,
1036
+ "grad_norm": 5.121507704839843,
1037
+ "learning_rate": 1.1453744493392071e-05,
1038
+ "loss": 1.9838,
1039
+ "step": 147
1040
+ },
1041
+ {
1042
+ "epoch": 0.9235569422776911,
1043
+ "grad_norm": 4.5855609090084855,
1044
+ "learning_rate": 1.1009174311926605e-05,
1045
+ "loss": 1.9952,
1046
+ "step": 148
1047
+ },
1048
+ {
1049
+ "epoch": 0.9297971918876755,
1050
+ "grad_norm": 2.8048531358016215,
1051
+ "learning_rate": 1.0526315789473684e-05,
1052
+ "loss": 1.9376,
1053
+ "step": 149
1054
+ },
1055
+ {
1056
+ "epoch": 0.9360374414976599,
1057
+ "grad_norm": 3.1695682113009767,
1058
+ "learning_rate": 1e-05,
1059
+ "loss": 1.9892,
1060
+ "step": 150
1061
+ },
1062
+ {
1063
+ "epoch": 0.9422776911076443,
1064
+ "grad_norm": 2.562068085601565,
1065
+ "learning_rate": 9.424083769633508e-06,
1066
+ "loss": 1.989,
1067
+ "step": 151
1068
+ },
1069
+ {
1070
+ "epoch": 0.9485179407176287,
1071
+ "grad_norm": 2.5588451099258958,
1072
+ "learning_rate": 8.79120879120879e-06,
1073
+ "loss": 2.0055,
1074
+ "step": 152
1075
+ },
1076
+ {
1077
+ "epoch": 0.9547581903276131,
1078
+ "grad_norm": 2.346708882799627,
1079
+ "learning_rate": 8.092485549132947e-06,
1080
+ "loss": 1.9344,
1081
+ "step": 153
1082
+ },
1083
+ {
1084
+ "epoch": 0.9609984399375975,
1085
+ "grad_norm": 1.9275298796427967,
1086
+ "learning_rate": 7.3170731707317065e-06,
1087
+ "loss": 1.9777,
1088
+ "step": 154
1089
+ },
1090
+ {
1091
+ "epoch": 0.9672386895475819,
1092
+ "grad_norm": 2.3144404690009934,
1093
+ "learning_rate": 6.451612903225806e-06,
1094
+ "loss": 2.0236,
1095
+ "step": 155
1096
+ },
1097
+ {
1098
+ "epoch": 0.9734789391575663,
1099
+ "grad_norm": 2.0378918646209385,
1100
+ "learning_rate": 5.479452054794519e-06,
1101
+ "loss": 1.9846,
1102
+ "step": 156
1103
+ },
1104
+ {
1105
+ "epoch": 0.9797191887675507,
1106
+ "grad_norm": 1.653128950918772,
1107
+ "learning_rate": 4.379562043795621e-06,
1108
+ "loss": 1.933,
1109
+ "step": 157
1110
+ },
1111
+ {
1112
+ "epoch": 0.9859594383775351,
1113
+ "grad_norm": 1.5724161203243192,
1114
+ "learning_rate": 3.125e-06,
1115
+ "loss": 2.0316,
1116
+ "step": 158
1117
+ },
1118
+ {
1119
+ "epoch": 0.9921996879875195,
1120
+ "grad_norm": 0.8954010032529827,
1121
+ "learning_rate": 1.680672268907563e-06,
1122
+ "loss": 1.9258,
1123
+ "step": 159
1124
+ },
1125
+ {
1126
+ "epoch": 0.9984399375975039,
1127
+ "grad_norm": 1.0745203334736726,
1128
+ "learning_rate": 0,
1129
+ "loss": 2.0094,
1130
+ "step": 160
1131
+ }
1132
+ ],
1133
+ "logging_steps": 1,
1134
+ "max_steps": 160,
1135
+ "num_input_tokens_seen": 0,
1136
+ "num_train_epochs": 1,
1137
+ "save_steps": 80,
1138
+ "stateful_callbacks": {
1139
+ "TrainerControl": {
1140
+ "args": {
1141
+ "should_epoch_stop": false,
1142
+ "should_evaluate": false,
1143
+ "should_log": false,
1144
+ "should_save": true,
1145
+ "should_training_stop": true
1146
+ },
1147
+ "attributes": {}
1148
+ }
1149
+ },
1150
+ "total_flos": 2.0297691278239334e+18,
1151
+ "train_batch_size": 4,
1152
+ "trial_name": null,
1153
+ "trial_params": null
1154
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f7f78a810b3e9165e4946aeb86b9fc41d44291554988961ec223e4638389bad
3
+ size 9041
zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)