Mungert commited on
Commit
2499697
·
verified ·
0 Parent(s):

Super-squash history to reclaim storage

Browse files
.gitattributes ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ AceReason-Nemotron-7B-f16.gguf filter=lfs diff=lfs merge=lfs -text
37
+ AceReason-Nemotron-7B-f16_q8_0.gguf filter=lfs diff=lfs merge=lfs -text
38
+ AceReason-Nemotron-7B-bf16_q8_0.gguf filter=lfs diff=lfs merge=lfs -text
39
+ AceReason-Nemotron-7B-f16_q6_k.gguf filter=lfs diff=lfs merge=lfs -text
40
+ AceReason-Nemotron-7B-bf16_q6_k.gguf filter=lfs diff=lfs merge=lfs -text
41
+ AceReason-Nemotron-7B-f16_q4_k.gguf filter=lfs diff=lfs merge=lfs -text
42
+ AceReason-Nemotron-7B-bf16_q4_k.gguf filter=lfs diff=lfs merge=lfs -text
43
+ AceReason-Nemotron-7B-q2_k_l.gguf filter=lfs diff=lfs merge=lfs -text
44
+ AceReason-Nemotron-7B-q3_k_l.gguf filter=lfs diff=lfs merge=lfs -text
45
+ AceReason-Nemotron-7B-q4_k_l.gguf filter=lfs diff=lfs merge=lfs -text
46
+ AceReason-Nemotron-7B-q5_k_l.gguf filter=lfs diff=lfs merge=lfs -text
47
+ AceReason-Nemotron-7B-q6_k_l.gguf filter=lfs diff=lfs merge=lfs -text
48
+ AceReason-Nemotron-7B-q2_k_m.gguf filter=lfs diff=lfs merge=lfs -text
49
+ AceReason-Nemotron-7B-q2_k_s.gguf filter=lfs diff=lfs merge=lfs -text
50
+ AceReason-Nemotron-7B-q3_k_m.gguf filter=lfs diff=lfs merge=lfs -text
51
+ AceReason-Nemotron-7B-q3_k_s.gguf filter=lfs diff=lfs merge=lfs -text
52
+ AceReason-Nemotron-7B-q4_k_m.gguf filter=lfs diff=lfs merge=lfs -text
53
+ AceReason-Nemotron-7B-q4_k_s.gguf filter=lfs diff=lfs merge=lfs -text
54
+ AceReason-Nemotron-7B-q5_k_m.gguf filter=lfs diff=lfs merge=lfs -text
55
+ AceReason-Nemotron-7B-q5_k_s.gguf filter=lfs diff=lfs merge=lfs -text
56
+ AceReason-Nemotron-7B-q6_k_m.gguf filter=lfs diff=lfs merge=lfs -text
57
+ AceReason-Nemotron-7B-q8_0.gguf filter=lfs diff=lfs merge=lfs -text
58
+ AceReason-Nemotron-7B-q4_0.gguf filter=lfs diff=lfs merge=lfs -text
59
+ AceReason-Nemotron-7B-q4_1.gguf filter=lfs diff=lfs merge=lfs -text
60
+ AceReason-Nemotron-7B-q4_0_l.gguf filter=lfs diff=lfs merge=lfs -text
61
+ AceReason-Nemotron-7B-q4_1_l.gguf filter=lfs diff=lfs merge=lfs -text
62
+ AceReason-Nemotron-7B-q5_0.gguf filter=lfs diff=lfs merge=lfs -text
63
+ AceReason-Nemotron-7B-q5_1.gguf filter=lfs diff=lfs merge=lfs -text
64
+ AceReason-Nemotron-7B-q5_0_l.gguf filter=lfs diff=lfs merge=lfs -text
65
+ AceReason-Nemotron-7B-q5_1_l.gguf filter=lfs diff=lfs merge=lfs -text
66
+ AceReason-Nemotron-7B-iq2_xs.gguf filter=lfs diff=lfs merge=lfs -text
67
+ AceReason-Nemotron-7B-iq2_xxs.gguf filter=lfs diff=lfs merge=lfs -text
68
+ AceReason-Nemotron-7B-iq2_s.gguf filter=lfs diff=lfs merge=lfs -text
69
+ AceReason-Nemotron-7B-iq2_m.gguf filter=lfs diff=lfs merge=lfs -text
70
+ AceReason-Nemotron-7B-iq3_xs.gguf filter=lfs diff=lfs merge=lfs -text
71
+ AceReason-Nemotron-7B-iq3_xxs.gguf filter=lfs diff=lfs merge=lfs -text
72
+ AceReason-Nemotron-7B-iq3_s.gguf filter=lfs diff=lfs merge=lfs -text
73
+ AceReason-Nemotron-7B-iq3_m.gguf filter=lfs diff=lfs merge=lfs -text
74
+ AceReason-Nemotron-7B-iq4_xs.gguf filter=lfs diff=lfs merge=lfs -text
75
+ AceReason-Nemotron-7B-iq4_nl.gguf filter=lfs diff=lfs merge=lfs -text
76
+ AceReason-Nemotron-7B.imatrix filter=lfs diff=lfs merge=lfs -text
77
+ AceReason-Nemotron-7B-bf16.gguf filter=lfs diff=lfs merge=lfs -text
AceReason-Nemotron-7B-bf16.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27db0e1d3201186c42b16e4a5f1cda5a126ff841c11c13ce0da8fbce1e73fceb
3
+ size 15237853088
AceReason-Nemotron-7B-bf16_q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe9d54e4edc2415d672950bfe1edf761c4a1b26ddc405c3ff6f627f82facbe89
3
+ size 11287998368
AceReason-Nemotron-7B-f16_q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3be66240ca76a6dd435bfb75a91e533eb9444eda1ad4545a3e1d69648dc54d01
3
+ size 11287998368
AceReason-Nemotron-7B-iq2_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35bf3496dc40cb1a4faf03f8e57bb9b9bfb3d5d685c8a53f0f4fc46366dd638a
3
+ size 3039121600
AceReason-Nemotron-7B-iq2_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31b949cdfa14dd4a48604b9c09ff737eafc78011a81c873a3f03ef8f97219033
3
+ size 2912964800
AceReason-Nemotron-7B-iq2_xs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b046703c34251f2746eeb3f8468ddc22dc97d6bf4175535320be7ab31dec692
3
+ size 2839335104
AceReason-Nemotron-7B-iq2_xxs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86e830d1c20ec5f8e394d369c00927db2330b0adb701266fa83e8e62497b72d9
3
+ size 2650902720
AceReason-Nemotron-7B-iq3_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c83441c37b9ac03847431cc7cc1f494b182eb18780cb7a9f1e341c4046bb182e
3
+ size 3779690688
AceReason-Nemotron-7B-iq3_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03a9f41467ce0a07230a3aef399ec9816c2d682b20586295d8a77084b05165e4
3
+ size 3779690688
AceReason-Nemotron-7B-iq3_xs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1da935638120429f8948d2419bf1142ac5ca4f83554d8217dcbd6f4003ef38a6
3
+ size 3450048704
AceReason-Nemotron-7B-iq3_xxs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8436338610c33b48b28d07fcd20aaf387b9494982a138fcc785aab795b964bb3
3
+ size 3379802304
AceReason-Nemotron-7B-iq4_nl.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3f89c67482e2da408a3b0b8210324bdb670d99924eb8d8eeaeb68cc1fb8bade
3
+ size 4437813440
AceReason-Nemotron-7B-iq4_xs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd27a633f01f86c7e7ec9013dce964e8b2661e79411c1f97b297ba46f3bb7b10
3
+ size 4218472640
AceReason-Nemotron-7B-q2_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ea1cca1c1e003ce740b1f5fba83d12bd5696f9d1a32a551c1574d7182ce9a24
3
+ size 3264110784
AceReason-Nemotron-7B-q2_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eaca8e2fa4cbfc1b7c51fdeeb3c631ccdf9c68e0fecba26f0325aef22b547dcd
3
+ size 3119345856
AceReason-Nemotron-7B-q3_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb2facbc1c4050d0e4ce15cb10dd9876be18a4d2134380f71f8985943f2c161a
3
+ size 4003504320
AceReason-Nemotron-7B-q3_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4deef551201b20c6763aa8baec980c61f3fbbc3e1c8c9e8c8944d24b4b7bac5
3
+ size 3858739392
AceReason-Nemotron-7B-q4_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cb31164cc1cc26ce411872db2ac6e074b5a1edfc097ba24e63c1f9cf142c045
3
+ size 4290883776
AceReason-Nemotron-7B-q4_1.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1ffd62b54d957e9305d0801366b000fc5efae8da7089867cb76990e12350478
3
+ size 4766838976
AceReason-Nemotron-7B-q4_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d49966c331ce8570c1783f3ac6705a3b7e0ada031d77a39a0091c5d0c2fd2cdc
3
+ size 4777648320
AceReason-Nemotron-7B-q4_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84fca42197ff90968678ad3d61ae8fac9b8bd8edffe91691d3e72eef415b919a
3
+ size 4634058944
AceReason-Nemotron-7B-q5_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a388b660675b45ec7173a027debeb32ad41abed48d9ccf4efabc8a53224992e1
3
+ size 5242794176
AceReason-Nemotron-7B-q5_1.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbea7ba724e61051f8df6793fb772a411f6922ca5cdaf8a7bdbdd9b79f389e2f
3
+ size 5718749376
AceReason-Nemotron-7B-q5_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37a55f0a590bc69816323ccb222feaa54b1d6840097449a3bb2c6c8223bd3679
3
+ size 5527449792
AceReason-Nemotron-7B-q5_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a7b3512de8ac1c502d954a38acd721d2e68a05bc0c60b25e90320c7c8cd3077
3
+ size 5453361344
AceReason-Nemotron-7B-q6_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d8dc70bbbb3067e17d507061ee0663a062e64fa20813e46a9eb32220c749488
3
+ size 6254198976
AceReason-Nemotron-7B-q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9667a945d515bbfbaf1a2d6e4deb9c17da5ac229f95bb4da6f387fabd3caa0ea
3
+ size 8098525088
AceReason-Nemotron-7B.imatrix ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d836b424d83004a9ea5fb391ca7329789d11dbf05317e818731065768ff9c2d4
3
+ size 4536678
README.md ADDED
@@ -0,0 +1,251 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+
4
+ ---
5
+ library_name: transformers
6
+ license: other
7
+ license_name: nvidia-open-model-license
8
+ license_link: >-
9
+ https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/
10
+ pipeline_tag: text-generation
11
+ language:
12
+ - en
13
+ tags:
14
+ - nvidia
15
+ - reasoning
16
+ - math
17
+ - code
18
+ - reinforcement learning
19
+ - pytorch
20
+ ---
21
+
22
+ # <span style="color: #7FFF7F;">AceReason-Nemotron-7B GGUF Models</span>
23
+
24
+
25
+ ## <span style="color: #7F7FFF;">Model Generation Details</span>
26
+
27
+ This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`b9c3eefd`](https://github.com/ggerganov/llama.cpp/commit/b9c3eefde1b67104bd993485ff38dd62abe9d70c).
28
+
29
+
30
+
31
+
32
+
33
+ ---
34
+
35
+ ## <span style="color: #7FFF7F;">Quantization Beyond the IMatrix</span>
36
+
37
+ I've been experimenting with a new quantization approach that selectively elevates the precision of key layers beyond what the default IMatrix configuration provides.
38
+
39
+ In my testing, standard IMatrix quantization underperforms at lower bit depths, especially with Mixture of Experts (MoE) models. To address this, I'm using the `--tensor-type` option in `llama.cpp` to manually "bump" important layers to higher precision. You can see the implementation here:
40
+ 👉 [Layer bumping with llama.cpp](https://github.com/Mungert69/GGUFModelBuilder/blob/main/model-converter/tensor_list_builder.py)
41
+
42
+ While this does increase model file size, it significantly improves precision for a given quantization level.
43
+
44
+ ### **I'd love your feedback—have you tried this? How does it perform for you?**
45
+
46
+
47
+
48
+
49
+ ---
50
+
51
+ <a href="https://readyforquantum.com/huggingface_gguf_selection_guide.html" style="color: #7FFF7F;">
52
+ Click here to get info on choosing the right GGUF model format
53
+ </a>
54
+
55
+ ---
56
+
57
+
58
+
59
+ <!--Begin Original Model Card-->
60
+
61
+
62
+ # AceReason-Nemotron: Advancing Math and Code Reasoning through Reinforcement Learning
63
+
64
+ <p align="center">
65
+
66
+ [![Technical Report](https://img.shields.io/badge/2505.16400-Technical_Report-blue)](https://arxiv.org/abs/2505.16400)
67
+ [![Dataset](https://img.shields.io/badge/🤗-Math_RL_Datset-blue)](https://huggingface.co/datasets/nvidia/AceReason-Math)
68
+ [![Models](https://img.shields.io/badge/🤗-Models-blue)](https://huggingface.co/collections/nvidia/acereason-682f4e1261dc22f697fd1485)
69
+ [![Eval Toolkit](https://img.shields.io/badge/🤗-Eval_Code-blue)](https://huggingface.co/nvidia/AceReason-Nemotron-14B/blob/main/README_EVALUATION.md)
70
+ </p>
71
+
72
+ <img src="fig/main_fig.png" alt="main_fig" style="width: 600px; max-width: 100%;" />
73
+
74
+ ## 🔥News
75
+ - **6/16/2025**: We are excited to share our new release combining SFT with RL: **AceReason-Nemotron-1.1-7B**
76
+ - Paper: https://arxiv.org/pdf/2506.13284
77
+ - Model: https://huggingface.co/nvidia/AceReason-Nemotron-1.1-7B
78
+ - 4M SFT Data: https://huggingface.co/datasets/nvidia/AceReason-1.1-SFT
79
+ - **6/11/2025**: We share our evaluation toolkit at [AceReason Evalution](https://huggingface.co/nvidia/AceReason-Nemotron-14B/blob/main/README_EVALUATION.md) including:
80
+ - scripts to run inference and scoring
81
+ - LiveCodeBench (avg@8): model prediction files and scores for each month (2023/5-2025/5)
82
+ - AIME24/25 (avg@64): model prediction files and scores
83
+ - **6/2/2025**: We are excited to share our Math RL training dataset at [AceReason-Math](https://huggingface.co/datasets/nvidia/AceReason-Math)
84
+
85
+ We're thrilled to introduce AceReason-Nemotron-7B, a math and code reasoning model trained entirely through reinforcement learning (RL), starting from the DeepSeek-R1-Distilled-Qwen-7B. It delivers impressive results, achieving 69.0% on AIME 2024 (+14.5%), 53.6% on AIME 2025 (+17.4%), 51.8% on LiveCodeBench v5 (+8%), 44.1% on LiveCodeBench v6 (+7%). We systematically study the RL training process through extensive ablations and propose a simple yet effective approach: first RL training on math-only prompts, then RL training on code-only prompts. Notably, we find that math-only RL not only significantly enhances the performance of strong distilled models on math benchmarks, but also code reasoning tasks. In addition, extended code-only RL further improves code benchmark performance while causing minimal degradation in math results. We find that RL not only elicits the foundational reasoning capabilities acquired during pre-training and supervised fine-tuning (e.g., distillation), but also pushes the limits of the model's reasoning ability, enabling it to solve problems that were previously unsolvable.
86
+
87
+ We share our training recipe, training logs in our technical report.
88
+
89
+ ## Results
90
+
91
+ We evaluate our model against competitive reasoning models of comparable size within Qwen2.5 and Llama3.1 model family on AIME 2024, AIME 2025, LiveCodeBench v5 (2024/08/01 - 2025/02/01), and LiveCodeBench v6 (2025/02/01-2025/05/01). More evaluation results can be found in our technical report.
92
+
93
+ | **Model** | **AIME 2024<br>(avg@64)** | **AIME 2025<br>(avg@64)** | **LCB v5<br>(avg@8)** | **LCB v6<br>(avg@8)** |
94
+ | :---: | :---: | :---: | :---: | :---: |
95
+ | <small>QwQ-32B</small> | 79.5 | 65.8 | 63.4 | - |
96
+ | <small>DeepSeek-R1-671B</small> | 79.8 | 70.0 | 65.9 | - |
97
+ | <small>Llama-Nemotron-Ultra-253B</small> | 80.8 | 72.5 | 66.3 | - |
98
+ | <small>o3-mini (medium)</small> | 79.6 | 76.7 | 67.4 | - |
99
+ | <small>Light-R1-7B</small> | 59.1 | 44.3 | 40.6 | 36.4 |
100
+ | <small>Light-R1-14B</small> | 74 | 60.2 | 57.9 | 51.5 |
101
+ | <small>DeepCoder-14B (32K Inference)</small> | 71 | 56.1 | 57.9 | 50.4 |
102
+ | <small>OpenMath-Nemotron-7B</small> | 74.8 | 61.2 | - | - |
103
+ | <small>OpenCodeReasoning-Nemotron-7B</small> | - | - | 51.3 | 46.1 |
104
+ | <small>Llama-Nemotron-Nano-8B-v1</small> | 61.3 | 47.1 | 46.6 |46.2 |
105
+ | <small>DeepSeek-R1-Distilled-Qwen-7B</small> | 55.5 | 39.0 | 37.6 | 34.1 |
106
+ | <small>DeepSeek-R1-Distilled-Qwen-14B</small> | 69.7 | 50.2 | 53.1 | 47.9 |
107
+ | <small>DeepSeek-R1-Distilled-Qwen-32B</small> | 72.6 | 54.9 | 57.2 | - |
108
+ | [AceReason-Nemotron-7B 🤗](https://huggingface.co/nvidia/AceReason-Nemotron-7B)| 69.0 | 53.6 | 51.8 | 44.1 |
109
+ | [AceReason-Nemotron-14B 🤗](https://huggingface.co/nvidia/AceReason-Nemotron-14B)| 78.6 | 67.4 | 61.1 | 54.9 |
110
+
111
+
112
+
113
+
114
+
115
+ ## How to use
116
+ ```python
117
+ import torch
118
+ from transformers import AutoModelForCausalLM, AutoTokenizer
119
+
120
+ model_name = 'nvidia/AceReason-Nemotron-7B'
121
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
122
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
123
+
124
+ prompt = "Jen enters a lottery by picking $4$ distinct numbers from $S=\\{1,2,3,\\cdots,9,10\\}.$ $4$ numbers are randomly chosen from $S.$ She wins a prize if at least two of her numbers were $2$ of the randomly chosen numbers, and wins the grand prize if all four of her numbers were the randomly chosen numbers. The probability of her winning the grand prize given that she won a prize is $\\tfrac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m+n$."
125
+ messages = [{"role": "user", "content": prompt}]
126
+
127
+ text = tokenizer.apply_chat_template(
128
+ messages,
129
+ tokenize=False,
130
+ add_generation_prompt=True
131
+ )
132
+ model_inputs = tokenizer([text], return_tensors="pt").to("cuda")
133
+
134
+ generated_ids = model.generate(
135
+ **model_inputs,
136
+ max_new_tokens=32768,
137
+ temperature=0.6,
138
+ top_p=0.95
139
+ )
140
+ generated_ids = [
141
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
142
+ ]
143
+
144
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
145
+ ```
146
+
147
+
148
+ ## Usage Recommendations
149
+
150
+ 1. Don't include a system prompt; instead, place all instructions directly in the user prompt.
151
+ 2. We recommend using the following instruction for math questions: Please reason step by step, and put your final answer within \\boxed{}.
152
+ 3. We recommend using the following instruction for code questions:
153
+ ```python
154
+ question = "" # code question
155
+ starter_code = "" # starter code function header
156
+
157
+ code_instruction_nostartercode = """Write Python code to solve the problem. Please place the solution code in the following format:\n```python\n# Your solution code here\n```"""
158
+ code_instruction_hasstartercode = """Please place the solution code in the following format:\n```python\n# Your solution code here\n```"""
159
+ if starter_code != "":
160
+ question += "\n\n" + "Solve the problem starting with the provided function header.\n\nFunction header:\n" + "```\n" + starter_code + "\n```"
161
+ question += "\n\n" + code_instruction_hasstartercode
162
+ else:
163
+ question += "\n\n" + code_instruction_nostartercode
164
+
165
+ final_prompt = "<|User|>" + question + "<|Assistant|><think>\n"
166
+ ```
167
+ 4. Our inference engine for evaluation is **vLLM==0.7.3** using top-p=0.95, temperature=0.6, max_tokens=32768.
168
+
169
+ ## Evaluation Toolkit
170
+
171
+ Please check evaluation code, scripts, cached prediction files in https://huggingface.co/nvidia/AceReason-Nemotron-14B/blob/main/README_EVALUATION.md
172
+
173
+
174
+ ## Correspondence to
175
+ Yang Chen (yachen@nvidia.com), Zhuolin Yang (zhuoliny@nvidia.com), Zihan Liu (zihanl@nvidia.com), Chankyu Lee (chankyul@nvidia.com), Wei Ping (wping@nvidia.com)
176
+
177
+
178
+ ## License
179
+ Your use of this model is governed by the [NVIDIA Open Model License](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/).
180
+
181
+
182
+ ## Citation
183
+ ```
184
+ @article{chen2025acereason,
185
+ title={AceReason-Nemotron: Advancing Math and Code Reasoning through Reinforcement Learning},
186
+ author={Chen, Yang and Yang, Zhuolin and Liu, Zihan and Lee, Chankyu and Xu, Peng and Shoeybi, Mohammad and Catanzaro, Bryan and Ping, Wei},
187
+ journal={arXiv preprint arXiv:2505.16400},
188
+ year={2025}
189
+ }
190
+ ```
191
+
192
+
193
+
194
+ <!--End Original Model Card-->
195
+
196
+ ---
197
+
198
+ # <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span>
199
+
200
+ Help me test my **AI-Powered Quantum Network Monitor Assistant** with **quantum-ready security checks**:
201
+
202
+ 👉 [Quantum Network Monitor](https://readyforquantum.com/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme)
203
+
204
+
205
+ The full Open Source Code for the Quantum Network Monitor Service available at my github repos ( repos with NetworkMonitor in the name) : [Source Code Quantum Network Monitor](https://github.com/Mungert69). You will also find the code I use to quantize the models if you want to do it yourself [GGUFModelBuilder](https://github.com/Mungert69/GGUFModelBuilder)
206
+
207
+ 💬 **How to test**:
208
+ Choose an **AI assistant type**:
209
+ - `TurboLLM` (GPT-4.1-mini)
210
+ - `HugLLM` (Hugginface Open-source models)
211
+ - `TestLLM` (Experimental CPU-only)
212
+
213
+ ### **What I’m Testing**
214
+ I’m pushing the limits of **small open-source models for AI network monitoring**, specifically:
215
+ - **Function calling** against live network services
216
+ - **How small can a model go** while still handling:
217
+ - Automated **Nmap security scans**
218
+ - **Quantum-readiness checks**
219
+ - **Network Monitoring tasks**
220
+
221
+ 🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads on huggingface docker space):
222
+ - ✅ **Zero-configuration setup**
223
+ - ⏳ 30s load time (slow inference but **no API costs**) . No token limited as the cost is low.
224
+ - 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate!
225
+
226
+ ### **Other Assistants**
227
+ 🟢 **TurboLLM** – Uses **gpt-4.1-mini** :
228
+ - **It performs very well but unfortunatly OpenAI charges per token. For this reason tokens usage is limited.
229
+ - **Create custom cmd processors to run .net code on Quantum Network Monitor Agents**
230
+ - **Real-time network diagnostics and monitoring**
231
+ - **Security Audits**
232
+ - **Penetration testing** (Nmap/Metasploit)
233
+
234
+ 🔵 **HugLLM** – Latest Open-source models:
235
+ - 🌐 Runs on Hugging Face Inference API. Performs pretty well using the lastest models hosted on Novita.
236
+
237
+ ### 💡 **Example commands you could test**:
238
+ 1. `"Give me info on my websites SSL certificate"`
239
+ 2. `"Check if my server is using quantum safe encyption for communication"`
240
+ 3. `"Run a comprehensive security audit on my server"`
241
+ 4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a [Quantum Network Monitor Agent](https://readyforquantum.com/Download/?utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme) to run the .net code on. This is a very flexible and powerful feature. Use with caution!
242
+
243
+ ### Final Word
244
+
245
+ I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful.
246
+
247
+ If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) ☕. Your support helps cover service costs and allows me to raise token limits for everyone.
248
+
249
+ I'm also open to job opportunities or sponsorship.
250
+
251
+ Thank you! 😊