|
|
--- |
|
|
license: mit |
|
|
datasets: |
|
|
- NousResearch/Hermes-3-Dataset |
|
|
- Anthropic/hh-rlhf |
|
|
- teknium/OpenHermes-2.5 |
|
|
- microsoft/orca-math-word-problems-200k |
|
|
- WizardLM/WizardLM_evol_instruct_V2_196k |
|
|
- calme/legalkit |
|
|
- nvidia/Llama-3.1-Nemotron-70B-Instruct-HF |
|
|
- Yoondi/bluemoon-roleplay-chat-jsonl |
|
|
- LooksJuicy/Chinese-Roleplay-Novel |
|
|
- zhouzr/pk-roleplay |
|
|
- openerotica/long-roleplay-v0.1 |
|
|
- mrcuddle/nous-character-codex |
|
|
- Arasaaf/myuri_roleplay |
|
|
- AlekseyKorshuk/gpt-roleplay-realm-chatml |
|
|
- diwank/gpt_roleplay_realm-chatml |
|
|
- Gryphe/Sonnet3.5-Charcard-Roleplay |
|
|
- hieunguyenminh/roleplay |
|
|
- zerofata/Roleplay-Anime-Characters |
|
|
- Locutusque/FalseReject-sharegpt |
|
|
- QuixiAI/open-instruct-uncensored |
|
|
- allenai/WildChat-4.8M-Full |
|
|
- nvidia/Llama-Nemotron-Post-Training-Dataset |
|
|
- WizardLMTeam/WizardLM_evol_instruct_V2_196k |
|
|
- nvidia/OpenCodeReasoning |
|
|
- MaziyarPanahi/calme-legalkit-v0.2 |
|
|
- Nitral-AI/Cybersecurity-ShareGPT |
|
|
- savaniDhruv/Cybersecurity_Attack_Dataset |
|
|
- openerotica/erotica-analysis |
|
|
- demelin/moral_stories |
|
|
language: |
|
|
- en |
|
|
- zh |
|
|
base_model: paperboygold/gpt-oss-sanguine-20b-v1 |
|
|
tags: |
|
|
- peft |
|
|
- lora |
|
|
- roleplay |
|
|
- creative-writing |
|
|
- consequence-based-alignment |
|
|
- gpt-oss |
|
|
- openai-harmony |
|
|
- llama-cpp |
|
|
- gguf-my-repo |
|
|
--- |
|
|
|
|
|
# MrDevolver/gpt-oss-sanguine-20b-v1-Q4_K_S-GGUF |
|
|
This model was converted to GGUF format from [`paperboygold/gpt-oss-sanguine-20b-v1`](https://huggingface.co/paperboygold/gpt-oss-sanguine-20b-v1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. |
|
|
Refer to the [original model card](https://huggingface.co/paperboygold/gpt-oss-sanguine-20b-v1) for more details on the model. |
|
|
|
|
|
## Use with llama.cpp |
|
|
Install llama.cpp through brew (works on Mac and Linux) |
|
|
|
|
|
```bash |
|
|
brew install llama.cpp |
|
|
|
|
|
``` |
|
|
Invoke the llama.cpp server or the CLI. |
|
|
|
|
|
### CLI: |
|
|
```bash |
|
|
llama-cli --hf-repo MrDevolver/gpt-oss-sanguine-20b-v1-Q4_K_S-GGUF --hf-file gpt-oss-sanguine-20b-v1-q4_k_s.gguf -p "The meaning to life and the universe is" |
|
|
``` |
|
|
|
|
|
### Server: |
|
|
```bash |
|
|
llama-server --hf-repo MrDevolver/gpt-oss-sanguine-20b-v1-Q4_K_S-GGUF --hf-file gpt-oss-sanguine-20b-v1-q4_k_s.gguf -c 2048 |
|
|
``` |
|
|
|
|
|
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. |
|
|
|
|
|
Step 1: Clone llama.cpp from GitHub. |
|
|
``` |
|
|
git clone https://github.com/ggerganov/llama.cpp |
|
|
``` |
|
|
|
|
|
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). |
|
|
``` |
|
|
cd llama.cpp && LLAMA_CURL=1 make |
|
|
``` |
|
|
|
|
|
Step 3: Run inference through the main binary. |
|
|
``` |
|
|
./llama-cli --hf-repo MrDevolver/gpt-oss-sanguine-20b-v1-Q4_K_S-GGUF --hf-file gpt-oss-sanguine-20b-v1-q4_k_s.gguf -p "The meaning to life and the universe is" |
|
|
``` |
|
|
or |
|
|
``` |
|
|
./llama-server --hf-repo MrDevolver/gpt-oss-sanguine-20b-v1-Q4_K_S-GGUF --hf-file gpt-oss-sanguine-20b-v1-q4_k_s.gguf -c 2048 |
|
|
``` |
|
|
|