add poly_norm_naive.cui for temp test
Browse files- activation/poly_norm_naive.cu +246 -0
activation/poly_norm_naive.cu
ADDED
|
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#include <ATen/cuda/CUDAContext.h>
|
| 2 |
+
#include <ATen/Functions.h>
|
| 3 |
+
#include <torch/all.h>
|
| 4 |
+
#include <c10/cuda/CUDAGuard.h>
|
| 5 |
+
|
| 6 |
+
#include <cmath>
|
| 7 |
+
|
| 8 |
+
#include "cuda_compat.h"
|
| 9 |
+
#include "dispatch_utils.h"
|
| 10 |
+
#include "assert_utils.h"
|
| 11 |
+
#include "atomic_utils.h"
|
| 12 |
+
#include "block_reduce.h"
|
| 13 |
+
|
| 14 |
+
namespace motif {
|
| 15 |
+
|
| 16 |
+
template <typename scalar_t, typename acc_t, int BLOCK_SIZE>
|
| 17 |
+
__global__ void poly_norm_naive_kernel(
|
| 18 |
+
scalar_t* __restrict__ out, // [..., d]
|
| 19 |
+
const scalar_t* __restrict__ input, // [..., d]
|
| 20 |
+
const scalar_t* __restrict__ weight, // [3]
|
| 21 |
+
const scalar_t* __restrict__ bias, // [1]
|
| 22 |
+
const float eps,
|
| 23 |
+
const int d
|
| 24 |
+
) {
|
| 25 |
+
const int64_t token_idx = blockIdx.x;
|
| 26 |
+
|
| 27 |
+
acc_t sum = 0.0f;
|
| 28 |
+
acc_t sum_square = 0.0f;
|
| 29 |
+
acc_t sum_cube = 0.0f;
|
| 30 |
+
|
| 31 |
+
for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) {
|
| 32 |
+
acc_t x = input[token_idx * d + idx];
|
| 33 |
+
sum += pow(x, 2.0f);
|
| 34 |
+
sum_square += pow(x, 4.0f);
|
| 35 |
+
sum_cube += pow(x, 6.0f);
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
__shared__ acc_t shared[BLOCK_SIZE];
|
| 39 |
+
|
| 40 |
+
acc_t mean = _block_reduce_sum<acc_t, BLOCK_SIZE>(shared, sum, d) / d;
|
| 41 |
+
acc_t mean_square = _block_reduce_sum<acc_t, BLOCK_SIZE>(shared, sum_square, d) / d;
|
| 42 |
+
acc_t mean_cube = _block_reduce_sum<acc_t, BLOCK_SIZE>(shared, sum_cube, d) / d;
|
| 43 |
+
|
| 44 |
+
acc_t w0 = weight[0];
|
| 45 |
+
acc_t w1 = weight[1];
|
| 46 |
+
acc_t w2 = weight[2];
|
| 47 |
+
acc_t b = bias[0];
|
| 48 |
+
|
| 49 |
+
acc_t divisor = sqrt(mean + eps);
|
| 50 |
+
acc_t divisor_square = sqrt(mean_square + eps);
|
| 51 |
+
acc_t divisor_cube = sqrt(mean_cube + eps);
|
| 52 |
+
|
| 53 |
+
for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) {
|
| 54 |
+
acc_t x = input[token_idx * d + idx];
|
| 55 |
+
acc_t x_square = pow(x, 2.0f);
|
| 56 |
+
acc_t x_cube = pow(x, 3.0f);
|
| 57 |
+
out[token_idx * d + idx] = w2 * x / divisor +
|
| 58 |
+
w1 * x_square / divisor_square +
|
| 59 |
+
w0 * x_cube / divisor_cube + b;
|
| 60 |
+
}
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
template <typename scalar_t, typename acc_t, int BLOCK_SIZE>
|
| 64 |
+
__global__ void poly_norm_naive_backward_kernel(
|
| 65 |
+
scalar_t* __restrict__ input_grad, // [..., d]
|
| 66 |
+
acc_t* __restrict__ temp_weight_grad, // [..., 3]
|
| 67 |
+
const scalar_t* __restrict__ output_grad, // [..., d]
|
| 68 |
+
const scalar_t* __restrict__ input, // [..., d]
|
| 69 |
+
const scalar_t* __restrict__ weight, // [3]
|
| 70 |
+
const float eps,
|
| 71 |
+
const int d
|
| 72 |
+
) {
|
| 73 |
+
const int64_t token_idx = blockIdx.x;
|
| 74 |
+
|
| 75 |
+
acc_t w0 = weight[0];
|
| 76 |
+
acc_t w1 = weight[1];
|
| 77 |
+
acc_t w2 = weight[2];
|
| 78 |
+
|
| 79 |
+
acc_t sum_2 = 0.0f;
|
| 80 |
+
acc_t sum_4 = 0.0f;
|
| 81 |
+
acc_t sum_6 = 0.0f;
|
| 82 |
+
|
| 83 |
+
acc_t sum_dx_1 = 0.0f;
|
| 84 |
+
acc_t sum_dx_2 = 0.0f;
|
| 85 |
+
acc_t sum_dx_3 = 0.0f;
|
| 86 |
+
|
| 87 |
+
for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) {
|
| 88 |
+
acc_t dy = output_grad[token_idx * d + idx];
|
| 89 |
+
|
| 90 |
+
acc_t x_1 = input[token_idx * d + idx];
|
| 91 |
+
acc_t x_2 = x_1 * x_1;
|
| 92 |
+
acc_t x_3 = x_2 * x_1;
|
| 93 |
+
acc_t x_4 = x_2 * x_2;
|
| 94 |
+
acc_t x_6 = x_3 * x_3;
|
| 95 |
+
|
| 96 |
+
sum_2 += x_2;
|
| 97 |
+
sum_4 += x_4;
|
| 98 |
+
sum_6 += x_6;
|
| 99 |
+
|
| 100 |
+
sum_dx_1 += dy * x_1;
|
| 101 |
+
sum_dx_2 += dy * x_2;
|
| 102 |
+
sum_dx_3 += dy * x_3;
|
| 103 |
+
}
|
| 104 |
+
|
| 105 |
+
__shared__ acc_t shared[BLOCK_SIZE];
|
| 106 |
+
|
| 107 |
+
acc_t mean_2 = _block_reduce_sum<acc_t, BLOCK_SIZE>(shared, sum_2, d) / d + eps;
|
| 108 |
+
acc_t mean_4 = _block_reduce_sum<acc_t, BLOCK_SIZE>(shared, sum_4, d) / d + eps;
|
| 109 |
+
acc_t mean_6 = _block_reduce_sum<acc_t, BLOCK_SIZE>(shared, sum_6, d) / d + eps;
|
| 110 |
+
|
| 111 |
+
sum_dx_1 = _block_reduce_sum<acc_t, BLOCK_SIZE>(shared, sum_dx_1, d);
|
| 112 |
+
sum_dx_2 = _block_reduce_sum<acc_t, BLOCK_SIZE>(shared, sum_dx_2, d);
|
| 113 |
+
sum_dx_3 = _block_reduce_sum<acc_t, BLOCK_SIZE>(shared, sum_dx_3, d);
|
| 114 |
+
|
| 115 |
+
acc_t _mean_2 = powf(mean_2, -1.5);
|
| 116 |
+
acc_t _mean_4 = powf(mean_4, -1.5);
|
| 117 |
+
acc_t _mean_6 = powf(mean_6, -1.5);
|
| 118 |
+
|
| 119 |
+
acc_t sq_mean_2 = sqrtf(mean_2);
|
| 120 |
+
acc_t sq_mean_4 = sqrtf(mean_4);
|
| 121 |
+
acc_t sq_mean_6 = sqrtf(mean_6);
|
| 122 |
+
|
| 123 |
+
acc_t sum_dw0 = 0;
|
| 124 |
+
acc_t sum_dw1 = 0;
|
| 125 |
+
acc_t sum_dw2 = 0;
|
| 126 |
+
|
| 127 |
+
for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) {
|
| 128 |
+
acc_t dy = output_grad[token_idx * d + idx];
|
| 129 |
+
acc_t x_1 = input[token_idx * d + idx];
|
| 130 |
+
acc_t x_2 = x_1 * x_1;
|
| 131 |
+
acc_t x_3 = x_2 * x_1;
|
| 132 |
+
|
| 133 |
+
acc_t dx_3 =
|
| 134 |
+
_mean_6 * 3 * x_2 * (dy * mean_6 - x_3 * sum_dx_3 / d) * w0;
|
| 135 |
+
acc_t dx_2 =
|
| 136 |
+
_mean_4 * 2 * x_1 * (dy * mean_4 - x_2 * sum_dx_2 / d) * w1;
|
| 137 |
+
acc_t dx_1 =
|
| 138 |
+
_mean_2 * (dy * mean_2 - x_1 * sum_dx_1 / d) * w2;
|
| 139 |
+
|
| 140 |
+
if (input_grad) {
|
| 141 |
+
input_grad[token_idx * d + idx] = dx_1 + dx_2 + dx_3;
|
| 142 |
+
}
|
| 143 |
+
|
| 144 |
+
sum_dw0 += dy * (x_3 / sq_mean_6);
|
| 145 |
+
sum_dw1 += dy * (x_2 / sq_mean_4);
|
| 146 |
+
sum_dw2 += dy * (x_1 / sq_mean_2);
|
| 147 |
+
}
|
| 148 |
+
|
| 149 |
+
if (temp_weight_grad) {
|
| 150 |
+
sum_dw0 = _block_reduce_sum<acc_t, BLOCK_SIZE>(shared, sum_dw0, d);
|
| 151 |
+
sum_dw1 = _block_reduce_sum<acc_t, BLOCK_SIZE>(shared, sum_dw1, d);
|
| 152 |
+
sum_dw2 = _block_reduce_sum<acc_t, BLOCK_SIZE>(shared, sum_dw2, d);
|
| 153 |
+
|
| 154 |
+
if (threadIdx.x == 0) {
|
| 155 |
+
temp_weight_grad[token_idx * 3 + 0] = sum_dw0;
|
| 156 |
+
temp_weight_grad[token_idx * 3 + 1] = sum_dw1;
|
| 157 |
+
temp_weight_grad[token_idx * 3 + 2] = sum_dw2;
|
| 158 |
+
}
|
| 159 |
+
}
|
| 160 |
+
}
|
| 161 |
+
|
| 162 |
+
} // namespace motif
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
void poly_norm_naive(torch::Tensor& out, // [..., d]
|
| 166 |
+
const torch::Tensor& input, // [..., d]
|
| 167 |
+
const torch::Tensor& weight, // [3]
|
| 168 |
+
const torch::Tensor& bias, // [1]
|
| 169 |
+
double eps)
|
| 170 |
+
{
|
| 171 |
+
AssertTensorShapeEqual(input, out, "input", "out");
|
| 172 |
+
AssertTensorNotNull(weight, "weight");
|
| 173 |
+
AssertTensorNotNull(bias, "bias");
|
| 174 |
+
// TODO shape check
|
| 175 |
+
|
| 176 |
+
constexpr int BLOCK_SIZE = 256;
|
| 177 |
+
|
| 178 |
+
int d = input.size(-1);
|
| 179 |
+
int64_t num_tokens = input.numel() / input.size(-1);
|
| 180 |
+
dim3 grid(num_tokens);
|
| 181 |
+
dim3 block(BLOCK_SIZE);
|
| 182 |
+
|
| 183 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
|
| 184 |
+
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
| 185 |
+
MOTIF_DISPATCH_FLOATING_TYPES(
|
| 186 |
+
input.scalar_type(), "poly_norm_naive_kernel", [&] {
|
| 187 |
+
motif::poly_norm_naive_kernel<scalar_t, float, BLOCK_SIZE>
|
| 188 |
+
<<<grid, block, 0, stream>>>(
|
| 189 |
+
out.data_ptr<scalar_t>(),
|
| 190 |
+
input.data_ptr<scalar_t>(),
|
| 191 |
+
weight.data_ptr<scalar_t>(),
|
| 192 |
+
bias.data_ptr<scalar_t>(), eps, d);
|
| 193 |
+
}
|
| 194 |
+
);
|
| 195 |
+
}
|
| 196 |
+
|
| 197 |
+
void poly_norm_naive_backward(
|
| 198 |
+
torch::Tensor& input_grad, // [..., d]
|
| 199 |
+
torch::Tensor& weight_grad, // [..., d]
|
| 200 |
+
torch::Tensor& bias_grad, // [..., d]
|
| 201 |
+
const torch::Tensor& output_grad, // [3]
|
| 202 |
+
const torch::Tensor& input, // [3]
|
| 203 |
+
const torch::Tensor& weight, // [3]
|
| 204 |
+
double eps) {
|
| 205 |
+
AssertTensorShapeEqual(input, input_grad, "input", "input_grad");
|
| 206 |
+
AssertTensorShapeEqual(input, output_grad, "input", "output_grad");
|
| 207 |
+
AssertTensorNotNull(weight, "weight");
|
| 208 |
+
// TODO shape check
|
| 209 |
+
// weight_grad, bias_grad and input_grad can be nullable
|
| 210 |
+
|
| 211 |
+
constexpr int BLOCK_SIZE = 256;
|
| 212 |
+
|
| 213 |
+
int d = input.size(-1);
|
| 214 |
+
int64_t num_tokens = input.numel() / input.size(-1);
|
| 215 |
+
dim3 grid(num_tokens);
|
| 216 |
+
dim3 block(BLOCK_SIZE);
|
| 217 |
+
|
| 218 |
+
torch::Tensor temp_weight_grad =
|
| 219 |
+
torch::empty({num_tokens, 3},
|
| 220 |
+
input.options().dtype(torch::kFloat));
|
| 221 |
+
|
| 222 |
+
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
| 223 |
+
|
| 224 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
|
| 225 |
+
MOTIF_DISPATCH_FLOATING_TYPES(
|
| 226 |
+
input.scalar_type(), "poly_norm_naive_backward_kernel", [&] {
|
| 227 |
+
motif::poly_norm_naive_backward_kernel<scalar_t, float, BLOCK_SIZE>
|
| 228 |
+
<<<grid, block, 0, stream>>>(
|
| 229 |
+
input_grad.data_ptr<scalar_t>(),
|
| 230 |
+
temp_weight_grad.data_ptr<float>(),
|
| 231 |
+
output_grad.data_ptr<scalar_t>(),
|
| 232 |
+
input.data_ptr<scalar_t>(),
|
| 233 |
+
weight.data_ptr<scalar_t>(),
|
| 234 |
+
eps, d);
|
| 235 |
+
}
|
| 236 |
+
);
|
| 237 |
+
|
| 238 |
+
if (bias_grad.defined()) {
|
| 239 |
+
at::sum_out(bias_grad, output_grad);
|
| 240 |
+
bias_grad.resize_({1});
|
| 241 |
+
}
|
| 242 |
+
|
| 243 |
+
if (weight_grad.defined()) {
|
| 244 |
+
at::sum_out(weight_grad, temp_weight_grad, {0});
|
| 245 |
+
}
|
| 246 |
+
}
|