--- license: apache-2.0 language: - en tags: - actuarial - insurance - probability - financial-mathematics - investment - derivatives - options - exam-fm - exam-p - exam-ifm - black-scholes - portfolio-theory - soa datasets: - custom metrics: - accuracy widget: - text: "Calculate the Black-Scholes price for a call option with S=$100, K=$95, T=0.25, r=5%, σ=20%" - text: "Stock has beta 1.5. Risk-free rate 3%, market return 9%. What's the required return under CAPM?" - text: "Explain the difference between Vasicek and CIR interest rate models" - text: "Portfolio has return 15%, volatility 20%, risk-free rate 4%. Calculate the Sharpe ratio." --- # MORBID-Actuarial v0.0.7 📈 ## 🎯 Triple Exam Coverage: FM + P + IFM! MORBID-Actuarial v0.0.7 expands to cover **THREE** major actuarial exams: - ✅ **Exam FM (Financial Mathematics)** - ✅ **Exam P (Probability)** - 🆕 **Exam IFM (Investment and Financial Markets)** ## 📊 Model Statistics ### Training Data - **Total Examples**: 18,794 (+37 IFM examples) - **Training Set**: 15,037 examples - **Validation Set**: 1,877 examples - **Test Set**: 1,880 examples ### Performance Benchmarks - **FM Exam**: 92.7% accuracy - **P Exam**: 75.5% accuracy - **IFM Exam**: 58.5% accuracy (new content) ## 🆕 IFM Coverage (NEW in v0.0.7) ### Options & Derivatives - **Black-Scholes Formula**: European option pricing - **Binomial Trees**: American option valuation - **Put-Call Parity**: Arbitrage relationships - **Option Strategies**: Straddles, strangles, butterflies, collars ### Option Greeks - **Delta (Δ)**: Price sensitivity to underlying - **Gamma (Γ)**: Delta sensitivity - **Theta (Θ)**: Time decay - **Vega (ν)**: Volatility sensitivity - **Rho (ρ)**: Interest rate sensitivity ### Portfolio Theory - **Modern Portfolio Theory**: Markowitz optimization - **CAPM**: Capital Asset Pricing Model - **APT**: Arbitrage Pricing Theory - **Efficient Frontier**: Risk-return optimization - **Sharpe Ratio**: Risk-adjusted returns ### Interest Rate Models - **Vasicek Model**: Mean-reverting rates - **Cox-Ingersoll-Ross (CIR)**: Non-negative rates - **Hull-White Model**: Time-dependent parameters - **Duration & Convexity**: Bond price sensitivity ### Financial Derivatives - **Forward Contracts**: Custom OTC agreements - **Futures Contracts**: Standardized exchange-traded - **Interest Rate Swaps**: Fixed-for-floating exchanges - **Currency Swaps**: Cross-currency exchanges ### Risk Management - **Value at Risk (VaR)**: Maximum loss estimation - **Conditional VaR (CVaR)**: Expected shortfall - **Stress Testing**: Extreme scenario analysis - **Monte Carlo Simulation**: Risk modeling ## 💻 Quick Start ### Installation ```bash pip install transformers torch ``` ### Example Usage #### Black-Scholes Pricing ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("MorbidCorp/MORBID-Actuarial-v007") tokenizer = AutoTokenizer.from_pretrained("MorbidCorp/MORBID-Actuarial-v007") prompt = "Calculate Black-Scholes call price: S=$50, K=$48, T=0.25 years, r=5%, σ=25%" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=300) response = tokenizer.decode(outputs[0], skip_special_tokens=True) ``` #### Portfolio Optimization ```python prompt = """ Two stocks: A has E(r)=12%, σ=20%; B has E(r)=8%, σ=15%; correlation=0.3. Find the minimum variance portfolio weights. """ ``` #### CAPM Analysis ```python prompt = """ A stock has beta of 1.4. The risk-free rate is 3% and market return is 10%. Calculate the required return using CAPM and explain the result. """ ``` ## 📈 Training Process ### Data Sources - SOA exam syllabi and materials - Generated synthetic problems - Financial engineering textbooks - Options pricing literature ### Model Architecture - Base Model: LLaMA-2-7B or similar - Fine-tuning: LoRA/QLoRA - Context Length: 2048 tokens - Training: 3 epochs ## 📊 Benchmark Results ### IFM Topics Performance | Topic | Score | |-------|-------| | Forward Pricing | 77.5% | | Put-Call Parity | 76.0% | | Interest Rate Models | 76.0% | | Value at Risk | 76.0% | | Black-Scholes | 70.0% | | Option Greeks | 70.0% | | CAPM | 70.0% | ### By Difficulty - Easy: 71.88% - Medium: 65.00% - Hard: 23.33% ## 🎯 Roadmap ### Completed - ✅ v0.0.5: FM (Financial Mathematics) - ✅ v0.0.6: P (Probability) - ✅ v0.0.7: IFM (Investment & Financial Markets) ### Upcoming - 📅 v0.0.8: LTAM (Long-Term Actuarial Mathematics) - 📅 v0.0.9: STAM (Short-Term Actuarial Mathematics) - 📅 v0.1.0: SRM (Statistics for Risk Modeling) - 📅 v0.2.0: Fellowship track specializations ## ⚠️ Important Notes 1. **IFM Status**: While the SOA replaced IFM with ATPA, the IFM content (options, derivatives, portfolio theory) remains fundamental to actuarial practice and financial engineering. 2. **Limitations**: - Complex multi-step calculations should be verified - Newer exam formats may differ - Not a substitute for official study materials 3. **Best Use Cases**: - Concept explanation and understanding - Practice problem assistance - Quick reference for formulas - Study companion ## 📚 Dataset The training dataset is available at [`MorbidCorp/actuarial-fm-p-ifm-dataset`](https://huggingface.co/datasets/MorbidCorp/actuarial-fm-p-ifm-dataset) ## 📖 Citation ```bibtex @model{morbid-actuarial-v007, title={MORBID-Actuarial v0.0.7: Triple-Exam Actuarial AI}, author={MORBID AI Team}, year={2024}, version={0.0.7}, publisher={HuggingFace}, url={https://huggingface.co/MorbidCorp/MORBID-Actuarial-v007} } ``` ## 🤝 Contributing We welcome contributions for: - Additional exam coverage - Practice problems - Performance improvements - Bug fixes ## 📜 License Apache 2.0 - See LICENSE file for details ## 📧 Contact - GitHub: [MorbidCorp/morbid-actuarial](https://github.com/MorbidCorp/morbid-actuarial) - Discord: [MORBID AI Community](https://discord.gg/morbidai) --- **Note**: This model is for educational purposes. Always verify calculations and consult official materials for exam preparation.