{ "model_id": "JonusNattapong/romeo-v6", "owner": "JonusNattapong", "license": "mit", "tags": [ "trading", "finance", "gold", "xauusd", "forex", "algorithmic-trading", "smart-money-concepts", "smc", "xgboost", "lightgbm", "machine-learning", "backtesting", "technical-analysis", "multi-timeframe", "intraday-trading", "high-frequency-trading", "ensemble-model", "keras", "tensorflow" ], "artifacts": [ "trading_model_romeo_daily.pkl", "romeo_keras_daily.keras" ], "metrics": { "initial_capital": 100.0, "final_capital": 162.31426062637883, "total_return_pct": 62.314260626378825, "total_trades": 207, "win_trades": 102, "win_rate": 0.4927536231884058, "avg_pnl": 0.30103507548975383 }, "feature_list": "artifact['features']", "usage": "Load artifact with joblib.load(). Align data to artifact['features'], fill missing with 0. Predict with ensemble weights. Use v6/backtest_v6.py with risk_per_trade=0.25 and threshold=0.8 for high-risk backtesting. Tested under normal (commission 0.02%, slippage 0.5pips) and difficult conditions (commission 0.05%, slippage 1.0pips).", "training_data": "Yahoo Finance GC=F 15m intraday data with SMC and technical features", "evaluation_data": "Unseen fresh 15m intraday data", "frameworks": ["scikit-learn", "xgboost", "lightgbm", "tensorflow"], "python_version": "3.8+", "dependencies": ["joblib", "pandas", "numpy", "scipy"], "caveats": "High-risk position sizing (25% risk per trade); higher volatility and drawdown; historical backtests only; not financial advice" }