romeo-v6 / metadata.json
JonusNattapong's picture
Upload metadata.json with huggingface_hub
7d92de6 verified
{
"model_id": "JonusNattapong/romeo-v6",
"owner": "JonusNattapong",
"license": "mit",
"tags": [
"trading",
"finance",
"gold",
"xauusd",
"forex",
"algorithmic-trading",
"smart-money-concepts",
"smc",
"xgboost",
"lightgbm",
"machine-learning",
"backtesting",
"technical-analysis",
"multi-timeframe",
"intraday-trading",
"high-frequency-trading",
"ensemble-model",
"keras",
"tensorflow"
],
"artifacts": [
"trading_model_romeo_daily.pkl",
"romeo_keras_daily.keras"
],
"metrics": {
"initial_capital": 100.0,
"final_capital": 162.31426062637883,
"total_return_pct": 62.314260626378825,
"total_trades": 207,
"win_trades": 102,
"win_rate": 0.4927536231884058,
"avg_pnl": 0.30103507548975383
},
"feature_list": "artifact['features']",
"usage": "Load artifact with joblib.load(). Align data to artifact['features'], fill missing with 0. Predict with ensemble weights. Use v6/backtest_v6.py with risk_per_trade=0.25 and threshold=0.8 for high-risk backtesting. Tested under normal (commission 0.02%, slippage 0.5pips) and difficult conditions (commission 0.05%, slippage 1.0pips).",
"training_data": "Yahoo Finance GC=F 15m intraday data with SMC and technical features",
"evaluation_data": "Unseen fresh 15m intraday data",
"frameworks": ["scikit-learn", "xgboost", "lightgbm", "tensorflow"],
"python_version": "3.8+",
"dependencies": ["joblib", "pandas", "numpy", "scipy"],
"caveats": "High-risk position sizing (25% risk per trade); higher volatility and drawdown; historical backtests only; not financial advice"
}