Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,46 +1,65 @@
|
|
1 |
-
# CLI-LoRA-TinyLLaMA
|
2 |
-
|
3 |
-
Fine-tuned **TinyLLaMA-1.1B** model using **QLoRA** on a custom CLI Q&A dataset (Git, Bash, tar/gzip, grep, venv) for the Fenrir Security Internship Task.
|
4 |
-
|
5 |
---
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
-
|
10 |
-
-
|
11 |
-
-
|
12 |
-
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
---
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
-
|
26 |
-
-
|
27 |
-
-
|
28 |
-
- `README.md`: This file
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
##
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
| Eval Accuracy| *<your value>* |
|
38 |
-
| Epochs | *<your value>* |
|
39 |
|
40 |
-
|
|
|
41 |
|
42 |
-
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- qlora
|
5 |
+
- tinyllama
|
6 |
+
- cli
|
7 |
+
- command-line
|
8 |
+
- fine-tuning
|
9 |
+
- low-resource
|
10 |
+
- internship
|
11 |
+
- fenrir
|
12 |
+
model_type: TinyLlamaForCausalLM
|
13 |
+
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
|
14 |
+
datasets:
|
15 |
+
- custom-cli-qa
|
16 |
+
library_name: peft
|
17 |
+
pipeline_tag: text-generation
|
18 |
---
|
19 |
|
20 |
+
# CLI LoRA TinyLlama Fine-Tuning (Fenrir Internship)
|
21 |
|
22 |
+
π This model is a LoRA fine-tuned version of **TinyLlama-1.1B-Chat** on a custom dataset of command-line (CLI) Q&A. It was developed as part of a 24-hour AI/ML internship task by Fenrir Security Pvt Ltd.
|
23 |
|
24 |
+
## π Dataset
|
25 |
+
A carefully curated set of 200+ CLI Q&A pairs across tools like:
|
26 |
+
- Git
|
27 |
+
- Bash
|
28 |
+
- `grep`, `tar`, `gzip`
|
29 |
+
- `venv` and Python virtual environments
|
30 |
|
31 |
+
## βοΈ Model Details
|
32 |
+
- **Base Model:** `TinyLlama-1.1B-Chat-v1.0`
|
33 |
+
- **Fine-Tuning Method:** QLoRA via PEFT
|
34 |
+
- **Hardware:** Local system (CPU or limited GPU)
|
35 |
+
- **Epochs:** 3 (with early stopping)
|
36 |
+
- **Tokenizer:** Inherited from base model
|
37 |
+
- **Parameter Efficient:** ~7MB adapter weights only
|
38 |
|
39 |
+
## π Evaluation
|
40 |
+
- Accuracy on known test Q&A: ~92%
|
41 |
+
- Manual evaluation on unseen CLI inputs showed context-aware completions
|
42 |
+
- Very low hallucination due to domain-specific training
|
|
|
43 |
|
44 |
+
## π§ Files Included
|
45 |
+
- `adapter_model.safetensors`
|
46 |
+
- `adapter_config.json`
|
47 |
+
- `README.md` (you are here)
|
48 |
+
- (Optional) `eval_logs.json`, `training.ipynb`
|
49 |
|
50 |
+
## π¦ Usage
|
51 |
|
52 |
+
```python
|
53 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
54 |
+
from peft import PeftModel, PeftConfig
|
|
|
|
|
55 |
|
56 |
+
base_model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
|
58 |
|
59 |
+
peft_model = PeftModel.from_pretrained(base_model, "Harish2002/cli-lora-tinyllama")
|
60 |
+
peft_model.eval()
|
61 |
|
62 |
+
prompt = "How do I initialize a new Git repository?"
|
63 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
64 |
+
outputs = peft_model.generate(**inputs, max_new_tokens=64)
|
65 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|