Upload 3 files
Browse files
speech_gen_ep2.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:35328d51bf792bc88a6a1cd06912d8a9e29c204f2fb81b520dffeab9f8248ec8
|
| 3 |
+
size 3239597589
|
wavtokenizer_large_unify_600_24k.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:72182c1b6bd5ea7f84cf3ec78a0a3244cf42daa660b2e9bce23f5d74064d8205
|
| 3 |
+
size 1759224573
|
wavtokenizer_smalldata_frame40_3s_nq1_code4096_dim512_kmeans200_attn.yaml
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
seed_everything: 3407
|
| 2 |
+
|
| 3 |
+
data:
|
| 4 |
+
class_path: decoder.dataset.VocosDataModule
|
| 5 |
+
init_args:
|
| 6 |
+
train_params:
|
| 7 |
+
filelist_path: ./WavTokenizer/data/train/libritts_train
|
| 8 |
+
sampling_rate: 24000
|
| 9 |
+
num_samples: 72000
|
| 10 |
+
batch_size: 40 # 20
|
| 11 |
+
num_workers: 8
|
| 12 |
+
|
| 13 |
+
val_params:
|
| 14 |
+
filelist_path: ./WavTokenizer/data/infer/librttts_val
|
| 15 |
+
sampling_rate: 24000
|
| 16 |
+
num_samples: 72000
|
| 17 |
+
batch_size: 5 # 10
|
| 18 |
+
num_workers: 8
|
| 19 |
+
|
| 20 |
+
model:
|
| 21 |
+
class_path: decoder.experiment.WavTokenizer
|
| 22 |
+
init_args:
|
| 23 |
+
sample_rate: 24000
|
| 24 |
+
initial_learning_rate: 2e-4
|
| 25 |
+
mel_loss_coeff: 45
|
| 26 |
+
mrd_loss_coeff: 1.0
|
| 27 |
+
num_warmup_steps: 0 # Optimizers warmup steps
|
| 28 |
+
pretrain_mel_steps: 0 # 0 means GAN objective from the first iteration
|
| 29 |
+
|
| 30 |
+
# automatic evaluation
|
| 31 |
+
evaluate_utmos: true
|
| 32 |
+
evaluate_pesq: true
|
| 33 |
+
evaluate_periodicty: true
|
| 34 |
+
|
| 35 |
+
resume: false
|
| 36 |
+
resume_config: ./WavTokenizer/configs/wavtokenizer_smalldata_frame40_3s_nq1_code16384_dim512_kmeans800_attn.yaml
|
| 37 |
+
resume_model: ./version_3/checkpoints/xxx.ckpt
|
| 38 |
+
|
| 39 |
+
feature_extractor:
|
| 40 |
+
class_path: decoder.feature_extractors.EncodecFeatures
|
| 41 |
+
init_args:
|
| 42 |
+
encodec_model: encodec_24khz
|
| 43 |
+
bandwidths: [6.6, 6.6, 6.6, 6.6]
|
| 44 |
+
train_codebooks: true
|
| 45 |
+
num_quantizers: 1
|
| 46 |
+
dowmsamples: [6, 5, 5, 4]
|
| 47 |
+
vq_bins: 4096
|
| 48 |
+
vq_kmeans: 200
|
| 49 |
+
|
| 50 |
+
backbone:
|
| 51 |
+
class_path: decoder.models.VocosBackbone
|
| 52 |
+
init_args:
|
| 53 |
+
input_channels: 512
|
| 54 |
+
dim: 768
|
| 55 |
+
intermediate_dim: 2304
|
| 56 |
+
num_layers: 12
|
| 57 |
+
adanorm_num_embeddings: 4
|
| 58 |
+
|
| 59 |
+
head:
|
| 60 |
+
class_path: decoder.heads.ISTFTHead
|
| 61 |
+
init_args:
|
| 62 |
+
dim: 768
|
| 63 |
+
n_fft: 2400
|
| 64 |
+
hop_length: 600
|
| 65 |
+
padding: same
|
| 66 |
+
|
| 67 |
+
trainer:
|
| 68 |
+
logger:
|
| 69 |
+
class_path: pytorch_lightning.loggers.TensorBoardLogger
|
| 70 |
+
init_args:
|
| 71 |
+
save_dir: ./WavTokenizer/result/train/wavtokenizer_smalldata_frame40_3s_nq1_code4096_dim512_kmeans200_attn/
|
| 72 |
+
callbacks:
|
| 73 |
+
- class_path: pytorch_lightning.callbacks.LearningRateMonitor
|
| 74 |
+
- class_path: pytorch_lightning.callbacks.ModelSummary
|
| 75 |
+
init_args:
|
| 76 |
+
max_depth: 2
|
| 77 |
+
- class_path: pytorch_lightning.callbacks.ModelCheckpoint
|
| 78 |
+
init_args:
|
| 79 |
+
monitor: val_loss
|
| 80 |
+
filename: wavtokenizer_checkpoint_{epoch}_{step}_{val_loss:.4f}
|
| 81 |
+
save_top_k: 10
|
| 82 |
+
save_last: true
|
| 83 |
+
- class_path: decoder.helpers.GradNormCallback
|
| 84 |
+
|
| 85 |
+
# Lightning calculates max_steps across all optimizer steps (rather than number of batches)
|
| 86 |
+
# This equals to 1M steps per generator and 1M per discriminator
|
| 87 |
+
max_steps: 20000000
|
| 88 |
+
# You might want to limit val batches when evaluating all the metrics, as they are time-consuming
|
| 89 |
+
limit_val_batches: 200
|
| 90 |
+
accelerator: gpu
|
| 91 |
+
strategy: ddp
|
| 92 |
+
devices: [0,1,2,3,4,5,6,7]
|
| 93 |
+
log_every_n_steps: 1000
|