Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +7 -0
- README.md +255 -0
- config.json +31 -0
- config_sentence_transformers.json +7 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: setfit
|
3 |
+
tags:
|
4 |
+
- setfit
|
5 |
+
- sentence-transformers
|
6 |
+
- text-classification
|
7 |
+
- generated_from_setfit_trainer
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
widget:
|
11 |
+
- text: <s_cord-v2><s_menu><s_nm> HINADALCO INDUSTRIES LIMITED</s_nm>GSTIH</s_nm><s_price>
|
12 |
+
214,000</s_price><sep/><s_nm> WHARADOPOWER HHARADOPOWER HHARADOPOWER HEROUPPOWER
|
13 |
+
HEROUPPOWER HEROUPPOWER HEROUPPOWER HEROUPPOWER</s_nm><sep/><s_nm> PHOCE 006.3636.FxG
|
14 |
+
CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCOCO CHOCO CHOCOCO
|
15 |
+
CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO
|
16 |
+
CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO
|
17 |
+
CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO
|
18 |
+
CHOCOCO CHOCOCO CHOCOCO CHOCOCOCO CHOCOCO CHOCOCOCO CHOCOCOCO CHOCOCOCO CHOCOCOCO
|
19 |
+
CHOCOCOCO CHOCOCOCOCO CHOCOCOCOCO CHOCOCOCOCOCO CHOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO
|
20 |
+
- text: <s_cord-v2><s_menu><s_nm> HNDALCO INDUSTRIES LIWITED</s_nm><s_discountprice>
|
21 |
+
-5</s_discountprice><s_price> SUSHIBILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILI
|
22 |
+
- text: <s_cord-v2><s_menu><s_nm> DUDHALA ROAD LINES</s_nm><s_num> P.O. HILLArud.
|
23 |
+
Dstc Sambalum</s_nm><s_num> JCHOCOLOGY</s_num><s_price> SUSHI<s_etc> 3834</s_etc></s_sub_total><s_total><s_total_price>
|
24 |
+
19,942</s_total_price><s_total_etc> 19,94</s_total_etc><s_emoneyprice> 19,942</s_total_etc><s_emoneyprice>
|
25 |
+
19,942</s_total_etc><s_emoneyprice> 19,942</s_total_etc><s_emoneyprice> 19,942</s_total_etc></s_total>
|
26 |
+
- text: <s_cord-v2><s_menu><s_nm> HINDALCO INDUSTRIES LIMITED</s_nm><s_price> SUSHICHEdzi
|
27 |
+
- Odiha<sep/><s_nm> HEROUP PORE CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO
|
28 |
+
CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO
|
29 |
+
CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO
|
30 |
+
CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO
|
31 |
+
CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO
|
32 |
+
CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO
|
33 |
+
CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO
|
34 |
+
CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO
|
35 |
+
CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO
|
36 |
+
CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO
|
37 |
+
CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO
|
38 |
+
CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO
|
39 |
+
CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO
|
40 |
+
CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO
|
41 |
+
CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO
|
42 |
+
CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO
|
43 |
+
CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO
|
44 |
+
CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO
|
45 |
+
CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO
|
46 |
+
CHOCO CHOCO CHOCO
|
47 |
+
- text: <s_cord-v2><s_menu><s_nm> M/S ANIL KUMAR SAHU</s_nm><s_num> ATIVO-HIRAKUD</s_nm><s_num>
|
48 |
+
AVAILI<s_etc> MOMOBILE NO. 97735729<sep/><s_nm> DIST - SAMBALPUR 769016. ODAISA</s_nm><s_num>
|
49 |
+
DIST -</s_num><s_price> AWAILLIO =よいu=<s_sub_total><s_subtotal_price> 529.6gnall.com</s_subtotal_price><s_discount_price>
|
50 |
+
HUNDALCO KINGUSUSTRIES LITED TAK INVOLICE</s_nm><s_num> HIRAKUD POWER</s_nm><s_num>
|
51 |
+
(SSUEDIUMGR RULAG POWER</s_nm><s_num> AVAI HIRAKUD</s_nm><s_num> AVOR<s_num> AVAIJI</s_num><s_price>
|
52 |
+
97736363636<sep/><s_nm> SAMBALPUR 798016.001KA</s_nm><s_num> DIST -</s_num><s_price>
|
53 |
+
447.20</s_price><sep/><s_nm> SATE COOE-</s_nm><s_num> 21</s_num><s_price> 11,030.020</s_price><sep/><s_nm>
|
54 |
+
GSTUN =</s_nm><s_num> 21AACH1201R122</s_nm><s_num> GST-</s_num><s_price> 11,030.020</s_price><sep/><s_nm>
|
55 |
+
AACH1201 PO. NO. P/PO/S/S/RVR/V/192/0976</s_num><s_price> 2,8402</s_price><sep/><s_nm>
|
56 |
+
DETAILS O COGING (HWHIPPED)</s_nm><s_num> P DATE</s_nm><s_num> PY DATE</s_nm><s_num>
|
57 |
+
JIKAYU POWER</s_nm><s_num> JATE OF ISSUE</s_nm><s_num> DIST SAMBALPUR - 798016.00H</s_nm><s_num>
|
58 |
+
JULY - 20116.0<sep/> JULY - SLI</s_nm><s_num> JANUARY - 2020 HW/S/S/C</s_nm><s_num>
|
59 |
+
SLINGGA CJANTITY UOM N. SPICYPICYE</s_nm><s_num> JANNABLE VALUE</s_nm><s_num>
|
60 |
+
SCI1764</s_num><s_price> (RS)</s_price><sep/><s_nm> ASH TRANSPOTATIONTO VARIOUS</s_nm><s_num>
|
61 |
+
SPICYE</s_nm><s_num> JULYE</s_nm><s_num> JULYE</s_nm><s_num> JULY JANUARY - 2020</s_nm><s_num>
|
62 |
+
SLIY -<sep/> SUS/AC</s_nm><s_num> SLIYMPH/SCALF</s_nm><s_num> SLIY SLIY SPICYMPYMPE</s_nm><s_num>
|
63 |
+
SLIY SPICYMPYPICYPICYE</s_nm><s_num> JANJAN TWINJANJANJAN SUSPICY SLIY SLIY SLIY
|
64 |
+
SPICYMPPICY SPICYMPE</s_nm><s_num> SPICYPICYPICYPICYPICYPICYE</s_nm><s_num> SLIY
|
65 |
+
SATE TAKABLE VALUE</s_nm><s_num> SLIF</s_nm><s_num> SLIF</s_nm><s_num> SLIF</s_nm><s_num>
|
66 |
+
SLIF</s_nm><s_num> SLIF</s_nm><s_num> SPICYMPE</s_nm><s_num> SLIF</s_nm><s_num>
|
67 |
+
SPICYPICYPICYE</s_nm><s_num> SPICYPICYPICYE</s_nm><s_num> SPICYPICYE</s_nm><s_num>
|
68 |
+
SPICYPICYE</s_nm><s_num> SPICYPICYE</s_nm><s_num> SPICYE</s_nm><s_num> SPICYE</s_nm><s_num>
|
69 |
+
SPICYE</s_nm><s_num> SPICYE</s_nm><s_num> SPICYE</s_nm><s_num> SPICYE</s_nm><s_num>
|
70 |
+
SPICYE</s_nm><s_num> SPICYE</s_nm><s_num> SPICYE</s_nm><s_num> SPICYE</s_nm><s_num>
|
71 |
+
SPICYE</s_nm><s_num> SPICYE</s_nm><s_num> SPICYE</s_nm><s_num> SPICYE</s_nm><s_num>
|
72 |
+
JULY JANUARY - 79016.016.00Hadviseur JULY - 2019 JULY - SLIF SLIF SLIF</s_nm><s_num>
|
73 |
+
SLIF SLIF/AC</s_nm><s_num> SLIF
|
74 |
+
pipeline_tag: text-classification
|
75 |
+
inference: true
|
76 |
+
base_model: BAAI/bge-small-en-v1.5
|
77 |
+
model-index:
|
78 |
+
- name: SetFit with BAAI/bge-small-en-v1.5
|
79 |
+
results:
|
80 |
+
- task:
|
81 |
+
type: text-classification
|
82 |
+
name: Text Classification
|
83 |
+
dataset:
|
84 |
+
name: Unknown
|
85 |
+
type: unknown
|
86 |
+
split: test
|
87 |
+
metrics:
|
88 |
+
- type: accuracy
|
89 |
+
value: 1.0
|
90 |
+
name: Accuracy
|
91 |
+
---
|
92 |
+
|
93 |
+
# SetFit with BAAI/bge-small-en-v1.5
|
94 |
+
|
95 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
96 |
+
|
97 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
98 |
+
|
99 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
100 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
101 |
+
|
102 |
+
## Model Details
|
103 |
+
|
104 |
+
### Model Description
|
105 |
+
- **Model Type:** SetFit
|
106 |
+
- **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
|
107 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
108 |
+
- **Maximum Sequence Length:** 512 tokens
|
109 |
+
- **Number of Classes:** 3 classes
|
110 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
111 |
+
<!-- - **Language:** Unknown -->
|
112 |
+
<!-- - **License:** Unknown -->
|
113 |
+
|
114 |
+
### Model Sources
|
115 |
+
|
116 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
117 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
118 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
119 |
+
|
120 |
+
### Model Labels
|
121 |
+
| Label | Examples |
|
122 |
+
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
123 |
+
| 2 | <ul><li>'<s_cord-v2><s_menu><s_nm> M/S ANIL KUMAR SAHU</s_nm><s_num> ATIVO-</s_num><s_discountprice> IMALID</s_discountprice><s_price> 9777362</s_price><sep/><s_nm> DIST - SAMBALPUR 769016. ODAH</s_nm><s_num> DIST -</s_num><s_discountprice> SUSHIKA</s_nm><s_num> DETAILIC ORESUPENT (BILLED TO)</s_nm><s_num> DATAIS NOVOICE</s_nm><s_num> SUSHI HUNDALCO INJUSTRIES LITC. (SSUEUNDER RULLE 46 GST/QGST RULAG)</s_nm><s_num> AV<sep/><s_nm> AYAPO HIRAKUD POWER</s_nm><s_num> AVYE</s_nm><s_num> AVYE DIST - SAMBALPUR 798016.001A</s_nm><s_num> AVOCUE NO. 487.20</s_num><s_price> 4877.00</s_price><sep/><s_nm> SATE COD:</s_nm><s_num> 21</s_num><s_price> 11,03020</s_price><sep/><s_nm> GSTIN =</s_nm><s_num> 21AACH1201R122</s_nm><s_num> GSTINE -<sep/><s_nm> AACH1201R</s_nm><s_num> PO. NO. P/PO/S/SVRV/P)</s_nm><s_num> P/PO/SNV/P/P/O/O/O/G<sep/><s_nm> DETAILS OCOGING (HIPPED)</s_nm><s_num> D) PO DATE</s_nm><s_num> JIRAKUD POWER</s_nm><s_num> JATE OF ISSUE</s_nm><s_num> JAT7PO HIRAKUR JER DIST - SAMBALPUR - 798016.00SHA</s_nm><s_num> D3JULY -</s_nm><s_num> D3JULY -</s_nm><s_num> D3JULY -</s_nm><s_num> SLINGGA SLINGGA SLINGGA SLINGGAC</s_nm><s_num> N.C. SPICN DISCLIPTON</s_nm><s_num> JANUARY - JUMPN/V/SPICN/C</s_nm><s_num> SLINGGA SLINGGAC</s_nm><s_num> NATE TAKABLE VALUE</s_nm><s_num> SCI1764</s_num><s_price> (RS.)</s_price><sep/><s_nm> ASH TRANSPONTON TOUR SPICN DIST SUSHIYANINGGANG SUSHIYAPICYPICYPICYPICYPICY MONTH JULY - JULY - MONTH JULY - -2018</s_nm><s_num> 90.44</s_nm><s_num> JULT - MONTHUF GUST - LET.018</s_num><s_unitprice> 313.50</s_unitprice><s_cnt> 2</s_cnt><s_price> 28,352.94<sep/><s_nm> MONTH OF GAT ENT BER BER BER BER BERGUT - -1019</s_nm><s_num> 313.50</s_num><s_unitprice> 313.50</s_unitprice><s_cnt> 3<sep/><s_nm> MONTH OUGUTH<sep/> MONTH MOMOH MOMOH CHECHEWER MISH 010H<sep/> MISH<sep/> MOMOHANGKAN MIS<s_num> JER MONTH MONTH MOMOH MOMOH MOMOH CHE CHE CHE CHE CHE CHE CHE CHE CHE CHE CHE CHE CHE CHE MONTH MONTH MONTH CHE CHE CHE CHE CHE CHE CHE CHE CHE CHE CHE CHE CHE CHE MONTH MONTH MONTH MONTH YOEWER CHE CHE CHE CHE CHE CHE CHE CHE CHE CHE CHE CHE CHE CHE CHE CHE MONTH MONTH MONTH MONTH YOECHE CHE CHE CHE CHE CHE CHE CHE CHE CHE CHE CHE '</li><li>'<s_cord-v2><s_menu><s_nm> P.K. TRIPATHY</s_nm><s_num> MOB -9861732186</s_num><s_price> 993819445</s_price><sep/><s_nm> C/O.P.K. Tripathy,Maa Tarini Residency</s_nm><s_num> BUdharaja,Sambalpuri</s_nm><s_num> 303545912</s_num><s_price> 4,327</s_price><sep/><s_nm> EMAIL: pratapktripathy @reidfmail.com</s_nm><s_num> 303545912</s_num><s_price> 12.86.10</s_price></s_menu><s_sub_total><s_subtotal_price> 25,092.28</s_subtotal_price><s_discount_price> 3,314</s_subtotal_price><s_discount_price> 3,314</s_discount_price><s_tax_price> 17,28.27</s_tax_price></s_sub_total><s_total><s_total_price> 17,28.27</s_total_price><s_total_etc> 3,36314</s_total_etc><s_creditcardprice> 3,36314</s_creditcardprice></s_total>'</li><li>'<s_cord-v2><s_menu><s_nm> ACC</s_nm><s_price> TAX INVQICE</s_nm><s_price> ACC Uimited</s_nm><s_price> ---</s_price><sep/><s_nm> ACC Uimited</s_nm><s_unitprice> ---classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classically-classclassically-classically-classically-classically-classically-classically-classically-classically-classclassically-classically-classically-classically-classically-classically-classically-classically-classically-classclassically-classically-classically-classically-classclassically-classically-classically-classically-classclassically-classically-classically-classically-classclassically-classically-classclassically-classically-classclassically-classically-classclassically-classclassically-classclassically-classclassically-classclassically-classclassically-classclassically-classclassically-classclassclassically-classclassically-classclassically-classclassclassically-classclassclassically-classclassclassically-classclassclassically-classclassclassically-classclassclassclassically-classclassclassically-classclassclassclassically-classclassclassically-classclassclassclassically-classclassclassclassically-classclassclassclassically-classclassclassclassically-classclassclassclassically-classclassclassclassclassically-classclassclassclassically-classclassclassclassclassically-classclassclassclassclassically-classclassclassclassclassically-'</li></ul> |
|
124 |
+
| 1 | <ul><li>'<s_cord-v2><s_menu><s_nm> HANDALCO INDUSTRIES LIMITED</s_nm><s_discountprice> - )</s_discountprice><s_price> SUSHIZE</s_price><sep/><s_nm> PHOKE CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCO CHOCOCO CHOCOCO CHOCO CHOCOCO CHOCOCO CHOCO CHOCOCO CHOCO CHOCOCO CHOCO CHOCOCO CHOCO CHOCOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHO'</li><li>'<s_cord-v2><s_menu><s_nm> HNDALCO INDUSTRIES LIWITED</s_nm><s_discountprice> -5</s_discountprice><s_price> SUSHIBILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILI'</li><li>'<s_cord-v2><s_menu><s_nm> HINA DLCO INDUSTRIES LIMITED</s_nm><s_price> SUSHIZE</s_price><sep/><s_nm> PONE CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCOCO CHOCO CHOCOCO CHOCOCO CHOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCOCO CHOCO CHOCO CHOCOCO CHOCOCO CHOCO CHOCOCO CHOCOCO CHOCO CHOCOCO CHOCOCO CHOCO CHOCOCO CHOCO CHOCOCO CHOCO CHOCOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO CHOCO'</li></ul> |
|
125 |
+
| 0 | <ul><li>'<s_cord-v2><s_menu><s_nm> SHRI SAL BRICKS & BLOCKS</s_nm><s_num> 2209-2019</s_num><s_unitprice> OUT</s_nm><s_num> 27-29-</s_num><s_price> ADORES WHT</s_nm><s_num> SLINO TIME</s_nm><s_num> LAT</s_nm><s_num> Adorass WT</s_nm><s_num> 52.909-</s_num><s_unitprice> SHEE SAL BRICKS</s_nm><s_num> BARGAH</s_nm><s_num> 15.182</s_price><sep/><s_nm> WONTH OF OCTOBER - 2019</s_nm><s_num> 27-0219</s_num><s_price> 29.74</s_price><sep/><s_nm> DATE VEHIGLE NO SLINO OUT BRICKS PLANT</s_nm><s_num> ADDRESS WT</s_nm><s_num> 10-05-</s_num><s_unitprice> 10-19-96-6801</s_unitprice><s_cnt> 1</s_cnt><s_price> GARGAAH 16.18</s_price><sep/><s_nm> 10-05-2019</s_num><s_unitprice> 10-19-96-6882</s_unitprice><s_cnt> 1</s_cnt><s_price> 15.14</s_price><sep/><s_nm> 10-05-</s_num><s_unitprice> 10,96-6000</s_unitprice><s_cnt> 1</s_cnt><s_price> 10,96-6000</s_price><sep/><s_nm> SHEREA SAT BRK & BLARGAAH</s_nm><s_num> 14:10/2019</s_num><s_unitprice> 13:10/2019</s_num><s_unitprice> 13:10/2019</s_num><s_unitprice> 10,96643</s_unitprice><s_cnt> 0.0374</s_cnt><s_price> 18,454</s_price><sep/><s_nm> SHEREA SALBRK & BL BARGAH</s_nm><s_num> 14:10/2019</s_num><s_unitprice> BLARGAH 1844</s_unitprice><s_cnt> 1</s_cnt><s_price> 15,14</s_price><sep/><s_nm> SHEREA SAT BLARGAH</s_nm><s_num> 16:10/2019</s_num><s_unitprice> 10,96-6413</s_unitprice><s_cnt> 0.836</s_unitprice><s_cnt> 0.836</s_unitprice><s_cnt> 1</s_cnt><s_price> 15,999</s_price><sep/><s_nm> SHEREA SATBRK & BL BARGAH</s_nm><s_num> 13:10/2019</s_num><s_unitprice> 10,96636<sep/><s_nm> SHEREA SATBRK & BL</s_nm><s_num> 13:10/2019</s_num><s_unitprice> 10,96636<sep/><s_nm> SHEREA SATBRK & BL</s_nm><s_num> 13:10/2019</s_num><s_unitprice> 10,96643</s_unitprice><s_cnt> 0.03</s_unitprice><s_cnt> 0.03</s_cnt><s_price> 18,44</s_price><sep/><s_nm> SHEREA SATBRK & BL</s_nm><s_num> 13:10/2015</s_num><s_unitprice> 10,909-</s_num><s_unitprice> 10,96-683636</s_unitprice><s_cnt> 0.36</s_unitprice><s_cnt> 3</s_cnt><s_price> 15,836</s_price><sep/><s_nm> SHEREA SATBIKK & BL</s_nm><s_num> 13:10/2019</s_num><s_unitprice> 10,836</s_unitprice><s_cnt> 3</s_cnt><s_price> 114.36</s_price><sep/><s_nm> MONTHINEET</s_nm><s_num> SLNOT</s_nm><s_num> SLANDE</s_nm><s_num> 0111-</s_num><s_unitprice> BRICS</s_num><s_unitprice> DIC</s_nm><s_num> 0111-</s_num><s_unitprice> DIC</s_unitprice><s_cnt> 0.014</s_cnt><s_price> 13.000</s_unitprice><s_cnt> 0.014</s_cnt><s_price> 13.000</s_price><sep/><s_nm> SHEREA SAI BANGKAH</s_nm><s_num> 13.000</s_unitprice><s_cnt> 15.000</s_cnt><s_price> 13.000</s_price><sep/><s_nm> SHEREA SAI BANGKAH</s_nm><s_num> 13:10/BIKK & BL</s_nm><s_num> 13:10/</s_num><s_unitprice> 10,836<sep/><s_nm> BANGARAH</s_nm><s_num> 13:10/</s_num><s_unitprice> 10,5018</s_unitprice><s_cnt> 1</s_cnt><s_price> 14:10/</s_num><s_unitprice> 10,50</s_num><s_unitprice> 10,50</s_num><s_unitprice> 10,50</s_num><s_unitprice> 10,50</s_num><s_unitprice> 10,50</s_num><s_unitprice> 10,50</s_num><s_unitprice> 10,50</s_num><s_unitprice> 10,50</s_num><s_unitprice> 10,50</s_num><s_unitprice> 10,50</s_num><s_unitprice> 10,50</s_num><s_unitprice> 10,50</s_num><s_unitprice> 10,50</s_num><s_unitprice> 10,50</s_num><s_unitprice> BANGKAH</s_nm><s_num> 144.36</s_unitprice><s_cnt> 10,50</s_num><s_unitprice> MONTHINEET</s_nm><s_num> SLE</s_nm><s_num> DATE VEHICHELE</s_nm><s_num> ACHE</s_nm><s_num> ACHE</s_nm><s_num> ACHE</s_nm><s_num> ACHE</s_nm><s_num> ACHE</s_nm><s_num> ACHE ACHE ACHE ACHE ACHE ACHE A'</li><li>'<s_cord-v2><s_menu><s_nm> SHRI SAL BRICKS & BLOCKS</s_nm><s_num> 0407</s_num><s_price> ADDRESS WT</s_nm><s_num> 0407</s_num><s_price> ADDRESS WT</s_nm><s_num> 0429</s_num><s_discountprice> 0.816</s_discountprice><s_price> BARGARM 14.93</s_price><sep/><s_nm> SHREE SAL</s_nm><s_num> SHARESAI</s_nm><s_num> 211-07</s_num><s_price> BRICKS</s_nm><s_num> 012</s_price><sep/><s_nm> SAUCE SAL</s_nm><s_num> 24019</s_num><s_discountprice> BRICKS BARGARH 14.83</s_discountprice><s_price> 15.35</s_price><sep/><s_nm> SHEEE SAL</s_nm><s_num> 2019</s_num><s_price> BARGARH 14.35</s_price><sep/><s_nm> SHIEE SAL</s_nm><s_num> SAI</s_nm><s_num> 012</s_num><s_price> 16.41</s_price><sep/><s_nm> SHIEE SAL</s_nm><s_num> 012</s_num><s_price> 16.41</s_price><sep/><s_nm> SHIEE SAL</s_nm><s_num> 012</s_num><s_price> 20.44</s_price><sep/><s_nm> SHIEE SAL</s_nm><s_num> SAI</s_nm><s_num> 20.41</s_num><s_price> 16.41</s_price><sep/><s_nm> SHIEE SAL</s_nm><s_num> 20.04</s_num><s_price> 20.44</s_price><sep/><s_nm> SHIEE SAL</s_nm><s_num> 20.04</s_num><s_price> 16.41</s_price><sep/><s_nm> SHIEE SAL</s_nm><s_num> 20.04</s_num><s_price> 20.04</s_price><sep/><s_nm> SHREE SAL</s_nm><s_num> 20.04</s_num><s_price> 31.07</s_price><sep/><s_nm> SHREE SAL</s_nm><s_num> 20.04</s_num><s_price> 16.41</s_price><sep/><s_nm> SHREE SAL</s_nm><s_num> 20.04</s_num><s_price> 20.04</s_price><sep/><s_nm> MONTH AUGUST - OUT</s_nm><s_num> 271-</s_num><s_price> 90.44</s_price><sep/><s_nm> DATE VEHICLE</s_nm><s_num> SLINO TIME</s_nm><s_num> AWT</s_nm><s_num> AVAT</s_nm><s_num> AVAT</s_nm><s_num> AVAT</s_nm><s_num> AVAT</s_nm><s_num> AVAT</s_nm><s_num> AVAT</s_nm><s_num> AVAT</s_nm><s_num> AVAT</s_nm><s_num> AVAT</s_nm><s_num> AVAT</s_nm><s_num> AVAT</s_nm><s_num> AVAT</s_nm><s_num> AVAT</s_nm><s_num> AVAT</s_nm><s_num> AVAT</s_nm><s_num> AVAT</s_nm><s_num> AVAT</s_nm><s_num> AVAT</s_nm><s_num> AVAT</s_nm><s_num> AVGARAH 15.60</s_num><s_price> 14.64</s_num><s_price> 13.95</s_num><s_price> 13.95</s_price><sep/><s_nm> SHREE SAL</s_nm><s_num> AVAI</s_nm><s_num> AVGARH 13.95</s_num><s_price> 14.64</s_num><s_price> 13.91</s_price><sep/><s_nm> SHREE SAL</s_nm><s_num> 31.08</s_num><s_price> 13.95</s_num><s_price> 31.95</s_price><sep/><s_nm> SHREE SAL</s_nm><s_num> 31.00</s_num><s_price> 13.95</s_num><s_price> 20.04</s_num><s_price> 9.28</s_num><s_price> 12.04</s_num><s_price> 20.04</s_num><s_price> 20.04</s_num><s_price> 9.28</s_num><s_price> 12.04</s_num><s_price> 20.04</s_num><s_price> 20.04</s_num><s_price> 9.28</s_num><s_price> 12.04</s_num><s_price> 20.04</s_num><s_price> 20.04</s_num><s_price> 9.28</s_num><s_price> 12.04</s_num><s_price> 12.04</s_num><s_price> 20.04</s_num><s_price> 20.04</s_num><s_price> 9.28</s_num><s_price> 12.04</s_num><s_price> 31.95</s_num><s_price> 4129</s_num><s_price> 9.28</s_num><s_price> 12.04</s_num><s_price> 12.04</s_num><s_price> 4129</s_num><s_price> 9.28</s_num><s_price> 12.95</s_price></s_menu><s_sub_total><s_subtotal_price> 57.70</s_num><s_price> 4129</s_num><s_price> 12.04</s_num><s_price> 12.04</s_num><s_price> 17.70</s_num><s_price> 4129</s_num><s_price> 12.04</s_num><s_price> 17.70</s_num><s_price> 4196</s_num><s_price> 4196</s_num><s_price> 6.57</s_num><s_price> 12.04</s_num><s_price> 17.70</s_num><s_price> 17.70</s_num><s_price> 17.00</s_num><s_price> 17.00</s_num><s_price> 17.00</s_num><s_price> 17.00</s_num><s_price> 17.00</s_num><s_price> 17.00</s_num><s_price> 17.00</s_num><s_price> 17.00</s_num><s_price> 12.04</s_num><s_price> 17.00</s_num><s_price> 17.000.00</s_price></s_menu><s_sub_total><s_subtotal_price> 90.44</s_subtotal_price><s_discount_price> 13.91</s_num><s_price> 13.91</s_subtotal_price><s_discount_price> 13.91</s_subtotal_price><s_discount_price> 13.95</s_num><s_price> 13.95</s_num><s_price> 12.00</s_num><s_price> 12.00</s_num><s_price> 12.00</s_num><s_price> 12.00</s_num><s_price> 12.00</s_num><s_price> 17.00</s_num><s_price> 12.00</s_num><s_price> 17.000.00</s_num><s_price> 12.000.00<s_nm> SHRK</s_num><s_price>'</li><li>'<s_cord-v2><s_menu><s_nm> SHRI SAL BRICKS & BLOCKS</s_nm><s_num> DATE VEHGLE適合</s_nm><s_num> SUNDA OUT</s_nm><s_num> BRICKS PLANT</s_nm><s_num> ADDRESS WT</s_nm><s_num> 0412</s_num><s_price> WH</s_nm><s_num> 041-2</s_price><sep/><s_nm> SHREE SAL BARGARH 14.53</s_price><sep/><s_nm> 20119</s_nm><s_num> 0412</s_num><s_price> 14.53</s_price><sep/><s_nm> WHRE SAL BAKGARH 1545</s_nm><s_num> 051-</s_num><s_price> BARGARH</s_nm><s_num> 2019</s_price><sep/><s_nm> WHRE SALI</s_nm><s_num> 1012</s_num><s_price> 18.09</s_price><sep/><s_nm> WHRE SALI</s_nm><s_num> 1012</s_num><s_price> BARGARH 16.05</s_price><sep/><s_nm> 1012</s_nm><s_num> 0147</s_num><s_unitprice> 12.19</s_unitprice><s_cnt> 3,8</s_cnt><s_price> 10.0</s_price><sep/><s_nm> 20112</s_cnt><s_price> 011</s_num><s_unitprice> 12.13</s_price><sep/><s_nm> WHRE SALI</s_nm><s_num> SAI</s_nm><s_num> SAI</s_nm><s_num> SAI</s_nm><s_num> SAI</s_nm><s_num> BARGARH 17.61</s_num><s_price> 13.618</s_price><sep/><s_nm> SHREE SALI</s_nm><s_num> SAI</s_nm><s_num> SAI</s_nm><s_num> SAI</s_nm><s_num> SAI</s_nm><s_num> SAI</s_nm><s_num> SAI</s_nm><s_num> 13,636<sep/><s_nm> 2011</s_num><s_price> 13.13</s_price><sep/><s_nm> WHITE</s_nm><s_num> JANJARY - NET</s_nm><s_num> DATE VEHGLEGLE NO SLNO. OUT</s_nm><s_num> DRICKS PLANT</s_nm><s_num> DORESE WT</s_nm><s_num> 0601</s_num><s_price> WT</s_nm><s_num> 014.452</s_cnt><s_price> 16.15</s_price><sep/><s_nm> SHREE SAL BANGKAM</s_nm><s_num> 0.21</s_num><s_price> 15.73</s_price><sep/><s_nm> SHREE SAL BRICK BARGAH 15.73</s_nm><s_num> 15,73</s_num><s_price> 16.97</s_price><sep/><s_nm> SHREE SAL BRICK BARGARH</s_nm><s_num> 144.85</s_num><s_price> 15.17</s_price></s_menu><s_sub_total><s_subtotal_price> 114.85</s_subtotal_price><s_discount_price> 13.13</s_subtotal_price><s_discount_price> 13.13</s_subtotal_price><s_discount_price> 13.13</s_discount_price><s_tax_price> 4,3</s_etc></s_sub_total><s_total><s_total_price> 114.85</s_total_price><s_cashprice> 0.18</s_cashprice></s_total>'</li></ul> |
|
126 |
+
|
127 |
+
## Evaluation
|
128 |
+
|
129 |
+
### Metrics
|
130 |
+
| Label | Accuracy |
|
131 |
+
|:--------|:---------|
|
132 |
+
| **all** | 1.0 |
|
133 |
+
|
134 |
+
## Uses
|
135 |
+
|
136 |
+
### Direct Use for Inference
|
137 |
+
|
138 |
+
First install the SetFit library:
|
139 |
+
|
140 |
+
```bash
|
141 |
+
pip install setfit
|
142 |
+
```
|
143 |
+
|
144 |
+
Then you can load this model and run inference.
|
145 |
+
|
146 |
+
```python
|
147 |
+
from setfit import SetFitModel
|
148 |
+
|
149 |
+
# Download from the 🤗 Hub
|
150 |
+
model = SetFitModel.from_pretrained("Gopal2002/setfit_zeon")
|
151 |
+
# Run inference
|
152 |
+
preds = model("<s_cord-v2><s_menu><s_nm> DUDHALA ROAD LINES</s_nm><s_num> P.O. HILLArud. Dstc Sambalum</s_nm><s_num> JCHOCOLOGY</s_num><s_price> SUSHI<s_etc> 3834</s_etc></s_sub_total><s_total><s_total_price> 19,942</s_total_price><s_total_etc> 19,94</s_total_etc><s_emoneyprice> 19,942</s_total_etc><s_emoneyprice> 19,942</s_total_etc><s_emoneyprice> 19,942</s_total_etc><s_emoneyprice> 19,942</s_total_etc></s_total>")
|
153 |
+
```
|
154 |
+
|
155 |
+
<!--
|
156 |
+
### Downstream Use
|
157 |
+
|
158 |
+
*List how someone could finetune this model on their own dataset.*
|
159 |
+
-->
|
160 |
+
|
161 |
+
<!--
|
162 |
+
### Out-of-Scope Use
|
163 |
+
|
164 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
165 |
+
-->
|
166 |
+
|
167 |
+
<!--
|
168 |
+
## Bias, Risks and Limitations
|
169 |
+
|
170 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
171 |
+
-->
|
172 |
+
|
173 |
+
<!--
|
174 |
+
### Recommendations
|
175 |
+
|
176 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
177 |
+
-->
|
178 |
+
|
179 |
+
## Training Details
|
180 |
+
|
181 |
+
### Training Set Metrics
|
182 |
+
| Training set | Min | Median | Max |
|
183 |
+
|:-------------|:----|:---------|:----|
|
184 |
+
| Word count | 6 | 137.5652 | 378 |
|
185 |
+
|
186 |
+
| Label | Training Sample Count |
|
187 |
+
|:------|:----------------------|
|
188 |
+
| 0 | 7 |
|
189 |
+
| 1 | 9 |
|
190 |
+
| 2 | 7 |
|
191 |
+
|
192 |
+
### Training Hyperparameters
|
193 |
+
- batch_size: (32, 32)
|
194 |
+
- num_epochs: (1, 1)
|
195 |
+
- max_steps: -1
|
196 |
+
- sampling_strategy: oversampling
|
197 |
+
- body_learning_rate: (2e-05, 1e-05)
|
198 |
+
- head_learning_rate: 0.01
|
199 |
+
- loss: CosineSimilarityLoss
|
200 |
+
- distance_metric: cosine_distance
|
201 |
+
- margin: 0.25
|
202 |
+
- end_to_end: False
|
203 |
+
- use_amp: False
|
204 |
+
- warmup_proportion: 0.1
|
205 |
+
- seed: 42
|
206 |
+
- eval_max_steps: -1
|
207 |
+
- load_best_model_at_end: False
|
208 |
+
|
209 |
+
### Training Results
|
210 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
211 |
+
|:------:|:----:|:-------------:|:---------------:|
|
212 |
+
| 0.0909 | 1 | 0.2752 | - |
|
213 |
+
|
214 |
+
### Framework Versions
|
215 |
+
- Python: 3.10.12
|
216 |
+
- SetFit: 1.0.1
|
217 |
+
- Sentence Transformers: 2.2.2
|
218 |
+
- Transformers: 4.35.2
|
219 |
+
- PyTorch: 2.1.0+cu121
|
220 |
+
- Datasets: 2.16.1
|
221 |
+
- Tokenizers: 0.15.0
|
222 |
+
|
223 |
+
## Citation
|
224 |
+
|
225 |
+
### BibTeX
|
226 |
+
```bibtex
|
227 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
228 |
+
doi = {10.48550/ARXIV.2209.11055},
|
229 |
+
url = {https://arxiv.org/abs/2209.11055},
|
230 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
231 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
232 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
233 |
+
publisher = {arXiv},
|
234 |
+
year = {2022},
|
235 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
236 |
+
}
|
237 |
+
```
|
238 |
+
|
239 |
+
<!--
|
240 |
+
## Glossary
|
241 |
+
|
242 |
+
*Clearly define terms in order to be accessible across audiences.*
|
243 |
+
-->
|
244 |
+
|
245 |
+
<!--
|
246 |
+
## Model Card Authors
|
247 |
+
|
248 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
249 |
+
-->
|
250 |
+
|
251 |
+
<!--
|
252 |
+
## Model Card Contact
|
253 |
+
|
254 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
255 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/root/.cache/torch/sentence_transformers/BAAI_bge-small-en-v1.5/",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"id2label": {
|
12 |
+
"0": "LABEL_0"
|
13 |
+
},
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 1536,
|
16 |
+
"label2id": {
|
17 |
+
"LABEL_0": 0
|
18 |
+
},
|
19 |
+
"layer_norm_eps": 1e-12,
|
20 |
+
"max_position_embeddings": 512,
|
21 |
+
"model_type": "bert",
|
22 |
+
"num_attention_heads": 12,
|
23 |
+
"num_hidden_layers": 12,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"torch_dtype": "float32",
|
27 |
+
"transformers_version": "4.35.2",
|
28 |
+
"type_vocab_size": 2,
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 30522
|
31 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.28.1",
|
5 |
+
"pytorch": "1.13.0+cu117"
|
6 |
+
}
|
7 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"labels": null
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f720739c5cf7b45c5aee25bf329780aaccf9fb3087d6f0c1379f79d001cec6bd
|
3 |
+
size 133462128
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:31685ed0242ed9566ca18e30dbbb7dc5db3acb9d77d5ea3d6eeaa2ea24f8565a
|
3 |
+
size 10095
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"never_split": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"strip_accents": null,
|
54 |
+
"tokenize_chinese_chars": true,
|
55 |
+
"tokenizer_class": "BertTokenizer",
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|