Update README.md
Browse files
README.md
CHANGED
@@ -6,8 +6,103 @@ tags:
|
|
6 |
license: mit
|
7 |
base_model:
|
8 |
- microsoft/Florence-2-large
|
|
|
|
|
9 |
---
|
10 |
|
11 |
-
#
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
license: mit
|
7 |
base_model:
|
8 |
- microsoft/Florence-2-large
|
9 |
+
datasets:
|
10 |
+
- GUIrilla/GUIrilla-Task
|
11 |
---
|
12 |
|
13 |
+
# GUIrilla-See-0.7B
|
14 |
|
15 |
+
*Lightweight vision–language model for GUI element localisation*
|
16 |
+
|
17 |
+
---
|
18 |
+
|
19 |
+
## Summary
|
20 |
+
|
21 |
+
**GUIrilla-See-0.7B** is a 0.7-billion-parameter model derived from **Florence 2-large** and fine-tuned for **open-vocabulary detection** in graphical user-interface (GUI) screenshots.
|
22 |
+
Given an image and a free-form textual description, the model returns either
|
23 |
+
|
24 |
+
* the bounding box of the best-matching element, or
|
25 |
+
* a polygon mask, when a bounding box is unavailable.
|
26 |
+
|
27 |
+
The model is intended for research on lightweight GUI agents, automated testing, and accessibility tools where a small footprint is preferred over the larger counterpart.
|
28 |
+
|
29 |
+
---
|
30 |
+
|
31 |
+
## Quick-start
|
32 |
+
|
33 |
+
```python
|
34 |
+
import torch, PIL.Image as Image
|
35 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
36 |
+
|
37 |
+
# --- load pipeline -----------------------------------------------------------
|
38 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
39 |
+
model_name = "GUIrilla/GUIrilla-See-0.7B" # 0.7 B weights
|
40 |
+
dtype = torch.bfloat16 if device == "cuda" else torch.float32
|
41 |
+
|
42 |
+
model = AutoModelForCausalLM.from_pretrained(
|
43 |
+
model_name, torch_dtype=dtype, trust_remote_code=True
|
44 |
+
).to(device)
|
45 |
+
|
46 |
+
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
|
47 |
+
|
48 |
+
# --- inference ---------------------------------------------------------------
|
49 |
+
image = Image.open("screenshot.png").convert("RGB")
|
50 |
+
task_prompt = "<OPEN_VOCABULARY_DETECTION>"
|
51 |
+
text_query = "button with the label “Submit”"
|
52 |
+
|
53 |
+
prompt = task_prompt + text_query
|
54 |
+
inputs = processor(text=prompt, images=[image], return_tensors="pt").to(device, dtype)
|
55 |
+
|
56 |
+
with torch.no_grad():
|
57 |
+
ids = model.generate(
|
58 |
+
input_ids = inputs["input_ids"],
|
59 |
+
pixel_values= inputs["pixel_values"],
|
60 |
+
max_new_tokens = 1024,
|
61 |
+
num_beams = 3,
|
62 |
+
do_sample = False,
|
63 |
+
early_stopping = False,
|
64 |
+
)
|
65 |
+
|
66 |
+
decoded = processor.batch_decode(ids, skip_special_tokens=False)[0]
|
67 |
+
result = processor.post_process_generation(
|
68 |
+
decoded, task=task_prompt, image_size=image.size
|
69 |
+
)["<OPEN_VOCABULARY_DETECTION>"]
|
70 |
+
|
71 |
+
```
|
72 |
+
|
73 |
+
---
|
74 |
+
|
75 |
+
## Training Data
|
76 |
+
|
77 |
+
Trained on [GUIrilla-Task](https://huggingface.co/datasets/GUIrilla/GUIrilla-Task).
|
78 |
+
|
79 |
+
* **Train data:** 25,606 tasks across 881 macOS applications (10% of apps from it for validation)
|
80 |
+
* **Test data:** 1,565 tasks across 227 macOS applications
|
81 |
+
|
82 |
+
---
|
83 |
+
|
84 |
+
## Training Procedure
|
85 |
+
|
86 |
+
* 4 epochs LoRA fine-tuning on 1 × A100 40 GB.
|
87 |
+
* Optimiser – AdamW (β₁ = 0.9, β₂ = 0.95), LR = 5 e-6 with 0.01 warm up ratio.
|
88 |
+
|
89 |
+
---
|
90 |
+
|
91 |
+
## Evaluation
|
92 |
+
|
93 |
+
| Split | Success Rate % |
|
94 |
+
| ----- | ---------------|
|
95 |
+
| Test | **53.55** |
|
96 |
+
|
97 |
+
---
|
98 |
+
|
99 |
+
## Ethical & Safety Notes
|
100 |
+
|
101 |
+
* Always sandbox or use confirmation steps when connecting the model to real GUIs.
|
102 |
+
* Screenshots may reveal sensitive data – ensure compliance with privacy regulations.
|
103 |
+
|
104 |
+
---
|
105 |
+
|
106 |
+
## License
|
107 |
+
|
108 |
+
MIT (see `LICENSE`).
|