# example_run.py from i3_model import i3Model, ChunkTokenizer from modeling_i3 import I3ForCausalLM, I3Config from tokenizer_i3 import I3Tokenizer import torch # Path to local model files (current folder) model_path = "." # Load tokenizer tokenizer = I3Tokenizer(vocab_file=f"{model_path}/chunk_vocab_combined.json") # Load HF-style model model = I3ForCausalLM.from_pretrained(model_path) model.eval() # Example prompt prompt = "hello, how are you" # Encode text input_ids = torch.tensor([tokenizer.encode(prompt)], dtype=torch.long) # Optional: move to GPU if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) input_ids = input_ids.to(device) # Generate tokens with torch.no_grad(): generated_ids = model.i3.generate( input_ids, max_new_tokens=50, temperature=0.8, top_k=40 ) # Decode generated text generated_text = tokenizer.decode(generated_ids[0].cpu().tolist()) print("Generated text:", generated_text)