File size: 1,004 Bytes
725812c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
# example_run.py
from i3_model import i3Model, ChunkTokenizer
from modeling_i3 import I3ForCausalLM, I3Config
from tokenizer_i3 import I3Tokenizer
import torch
# Path to local model files (current folder)
model_path = "."
# Load tokenizer
tokenizer = I3Tokenizer(vocab_file=f"{model_path}/chunk_vocab_combined.json")
# Load HF-style model
model = I3ForCausalLM.from_pretrained(model_path)
model.eval()
# Example prompt
prompt = "hello, how are you"
# Encode text
input_ids = torch.tensor([tokenizer.encode(prompt)], dtype=torch.long)
# Optional: move to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
input_ids = input_ids.to(device)
# Generate tokens
with torch.no_grad():
generated_ids = model.i3.generate(
input_ids,
max_new_tokens=50,
temperature=0.8,
top_k=40
)
# Decode generated text
generated_text = tokenizer.decode(generated_ids[0].cpu().tolist())
print("Generated text:", generated_text)
|