# train_tokenizer.py from tokenizers import ByteLevelBPETokenizer from pathlib import Path import requests #Devansh Sinha texts = [] #Devansh Sinha # Download multiple books from Project Gutenberg for a larger dataset urls = [ "https://www.gutenberg.org/files/11/11-0.txt", # Alice in Wonderland "https://www.gutenberg.org/files/1342/1342-0.txt", # Pride and Prejudice "https://www.gutenberg.org/files/84/84-0.txt", # Frankenstein "https://www.gutenberg.org/files/1661/1661-0.txt", # Sherlock Holmes "https://www.gutenberg.org/files/2701/2701-0.txt", # Moby Dick "https://www.gutenberg.org/files/98/98-0.txt", # A Tale of Two Cities "https://www.gutenberg.org/files/5200/5200-0.txt", # Metamorphosis "https://www.gutenberg.org/files/2600/2600-0.txt", # War and Peace "https://www.gutenberg.org/files/74/74-0.txt", # The Adventures of Tom Sawyer "https://www.gutenberg.org/files/1400/1400-0.txt", # Great Expectations ] #Devansh Sinha for url in urls: print(f"Downloading {url} ...") response = requests.get(url) if response.status_code == 200: book_texts = [line.strip() for line in response.text.split('\n') if line.strip()] texts.extend(book_texts) print(f"Added {len(book_texts)} lines.") else: print(f"Failed to download {url}") #Devansh Sinha print(f"Total lines collected: {len(texts)}") #Devansh Sinha # Count total number of training tokens (words/wordpieces) total_tokens = sum(len(line.split()) for line in texts) print(f"Total number of training tokens (approximate, whitespace split): {total_tokens}") # Save all texts to a temporary file for training corpus_path = "corpus.txt" with open(corpus_path, "w", encoding="utf-8") as f: for line in texts: f.write(line + "\n") #Devansh Sinha # Train a Byte Pair Encoding (BPE) tokenizer tokenizer = ByteLevelBPETokenizer() tokenizer.train( files=corpus_path, vocab_size=10000, min_frequency=2, special_tokens=["", "", "", "", ""] ) #Devansh Sinha # Save the tokenizer save_dir = "my-10k-bpe-tokenizer" Path(save_dir).mkdir(exist_ok=True) tokenizer.save_model(save_dir) #Devansh Sinha # Save as HuggingFace tokenizer JSON for compatibility tokenizer_json_path = str(Path(save_dir) / "tokenizer.json") tokenizer.save(tokenizer_json_path) print(f"Saved HuggingFace-compatible tokenizer.json to {tokenizer_json_path}") print(f"BPE tokenizer trained and saved to {save_dir}/") print(f"Number of tokens in vocab: {tokenizer.get_vocab_size()}")