File size: 26,025 Bytes
d6a8b09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 |
# Copyright 2025 Emmanuel Cortes, All Rights Reserved.
#
# Copyright 2024 Answer.AI, LightOn, and contributors, and the HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is adapted from the transformers library.
# Modifications include:
# - Additional classifier_pooling options for ModChemBertForSequenceClassification
# - sum_mean, sum_sum, mean_sum, mean_mean: from ChemLM (utilizes all hidden states)
# - max_cls, cls_mha, max_seq_mha: from MaxPoolBERT (utilizes last k hidden states)
# - max_seq_mean: a merge between sum_mean and max_cls (utilizes last k hidden states)
# - Addition of ModChemBertPoolingAttention for cls_mha and max_seq_mha pooling options
import copy
import math
import typing
from contextlib import nullcontext
import torch
import torch.nn as nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
from transformers.modeling_outputs import MaskedLMOutput, SequenceClassifierOutput
from transformers.models.modernbert.modeling_modernbert import (
MODERNBERT_ATTENTION_FUNCTION,
ModernBertModel,
ModernBertPredictionHead,
ModernBertPreTrainedModel,
ModernBertRotaryEmbedding,
_pad_modernbert_output,
_unpad_modernbert_input,
)
from transformers.utils import logging
from .configuration_modchembert import ModChemBertConfig
logger = logging.get_logger(__name__)
class InitWeightsMixin:
def _init_weights(self, module: nn.Module):
super()._init_weights(module) # type: ignore
cutoff_factor = self.config.initializer_cutoff_factor # type: ignore
if cutoff_factor is None:
cutoff_factor = 3
def init_weight(module: nn.Module, std: float):
if isinstance(module, nn.Linear):
nn.init.trunc_normal_(
module.weight,
mean=0.0,
std=std,
a=-cutoff_factor * std,
b=cutoff_factor * std,
)
if module.bias is not None:
nn.init.zeros_(module.bias)
stds = {
"in": self.config.initializer_range, # type: ignore
"out": self.config.initializer_range / math.sqrt(2.0 * self.config.num_hidden_layers), # type: ignore
"final_out": self.config.hidden_size**-0.5, # type: ignore
}
if isinstance(module, ModChemBertForMaskedLM):
init_weight(module.decoder, stds["out"])
elif isinstance(module, ModChemBertForSequenceClassification):
init_weight(module.classifier, stds["final_out"])
elif isinstance(module, ModChemBertPoolingAttention):
init_weight(module.Wq, stds["in"])
init_weight(module.Wk, stds["in"])
init_weight(module.Wv, stds["in"])
init_weight(module.Wo, stds["out"])
class ModChemBertPoolingAttention(nn.Module):
"""Performs multi-headed self attention on a batch of sequences."""
def __init__(self, config: ModChemBertConfig):
super().__init__()
self.config = copy.deepcopy(config)
# Override num_attention_heads to use classifier_pooling_num_attention_heads
self.config.num_attention_heads = config.classifier_pooling_num_attention_heads
# Override attention_dropout to use classifier_pooling_attention_dropout
self.config.attention_dropout = config.classifier_pooling_attention_dropout
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention heads "
f"({config.num_attention_heads})"
)
self.attention_dropout = config.attention_dropout
self.num_heads = config.num_attention_heads
self.head_dim = config.hidden_size // config.num_attention_heads
self.all_head_size = self.head_dim * self.num_heads
self.Wq = nn.Linear(config.hidden_size, self.all_head_size, bias=config.attention_bias)
self.Wk = nn.Linear(config.hidden_size, self.all_head_size, bias=config.attention_bias)
self.Wv = nn.Linear(config.hidden_size, self.all_head_size, bias=config.attention_bias)
# Use global attention
self.local_attention = (-1, -1)
rope_theta = config.global_rope_theta
# sdpa path from original ModernBert implementation
config_copy = copy.deepcopy(config)
config_copy.rope_theta = rope_theta
self.rotary_emb = ModernBertRotaryEmbedding(config=config_copy)
self.Wo = nn.Linear(config.hidden_size, config.hidden_size, bias=config.attention_bias)
self.out_drop = nn.Dropout(config.attention_dropout) if config.attention_dropout > 0.0 else nn.Identity()
self.pruned_heads = set()
def forward(
self,
q: torch.Tensor,
kv: torch.Tensor,
attention_mask: torch.Tensor | None = None,
**kwargs,
) -> torch.Tensor:
bs, seq_len = kv.shape[:2]
q_proj: torch.Tensor = self.Wq(q)
k_proj: torch.Tensor = self.Wk(kv)
v_proj: torch.Tensor = self.Wv(kv)
qkv = torch.stack(
(
q_proj.reshape(bs, seq_len, self.num_heads, self.head_dim),
k_proj.reshape(bs, seq_len, self.num_heads, self.head_dim),
v_proj.reshape(bs, seq_len, self.num_heads, self.head_dim),
),
dim=2,
) # (bs, seq_len, 3, num_heads, head_dim)
device = kv.device
if attention_mask is None:
attention_mask = torch.ones((bs, seq_len), device=device, dtype=torch.bool)
position_ids = torch.arange(seq_len, device=device).unsqueeze(0).long()
attn_outputs = MODERNBERT_ATTENTION_FUNCTION["sdpa"](
self,
qkv=qkv,
attention_mask=_prepare_4d_attention_mask(attention_mask, kv.dtype),
sliding_window_mask=None, # not needed when using global attention
position_ids=position_ids,
local_attention=self.local_attention,
bs=bs,
dim=self.all_head_size,
**kwargs,
)
hidden_states = attn_outputs[0]
hidden_states = self.out_drop(self.Wo(hidden_states))
return hidden_states
class ModChemBertForMaskedLM(InitWeightsMixin, ModernBertPreTrainedModel):
config_class = ModChemBertConfig
_tied_weights_keys = ["decoder.weight"]
def __init__(self, config: ModChemBertConfig):
super().__init__(config)
self.config = config
self.model = ModernBertModel(config)
self.head = ModernBertPredictionHead(config)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=config.decoder_bias)
self.sparse_prediction = self.config.sparse_prediction
self.sparse_pred_ignore_index = self.config.sparse_pred_ignore_index
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.decoder
def set_output_embeddings(self, new_embeddings: nn.Linear):
self.decoder = new_embeddings
@torch.compile(dynamic=True)
def compiled_head(self, output: torch.Tensor) -> torch.Tensor:
return self.decoder(self.head(output))
def forward(
self,
input_ids: torch.LongTensor | None = None,
attention_mask: torch.Tensor | None = None,
sliding_window_mask: torch.Tensor | None = None,
position_ids: torch.Tensor | None = None,
inputs_embeds: torch.Tensor | None = None,
labels: torch.Tensor | None = None,
indices: torch.Tensor | None = None,
cu_seqlens: torch.Tensor | None = None,
max_seqlen: int | None = None,
batch_size: int | None = None,
seq_len: int | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
**kwargs,
) -> tuple[torch.Tensor] | tuple[torch.Tensor, typing.Any] | MaskedLMOutput:
r"""
sliding_window_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding or far-away tokens. In ModernBert, only every few layers
perform global attention, while the rest perform local attention. This mask is used to avoid attending to
far-away tokens in the local attention layers when not using Flash Attention.
indices (`torch.Tensor` of shape `(total_unpadded_tokens,)`, *optional*):
Indices of the non-padding tokens in the input sequence. Used for unpadding the output.
cu_seqlens (`torch.Tensor` of shape `(batch + 1,)`, *optional*):
Cumulative sequence lengths of the input sequences. Used to index the unpadded tensors.
max_seqlen (`int`, *optional*):
Maximum sequence length in the batch excluding padding tokens. Used to unpad input_ids & pad output tensors.
batch_size (`int`, *optional*):
Batch size of the input sequences. Used to pad the output tensors.
seq_len (`int`, *optional*):
Sequence length of the input sequences including padding tokens. Used to pad the output tensors.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
self._maybe_set_compile()
if self.config._attn_implementation == "flash_attention_2": # noqa: SIM102
if indices is None and cu_seqlens is None and max_seqlen is None:
if batch_size is None and seq_len is None:
if inputs_embeds is not None:
batch_size, seq_len = inputs_embeds.shape[:2]
else:
batch_size, seq_len = input_ids.shape[:2] # type: ignore
device = input_ids.device if input_ids is not None else inputs_embeds.device # type: ignore
if attention_mask is None:
attention_mask = torch.ones((batch_size, seq_len), device=device, dtype=torch.bool) # type: ignore
if inputs_embeds is None:
with torch.no_grad():
input_ids, indices, cu_seqlens, max_seqlen, position_ids, labels = _unpad_modernbert_input(
inputs=input_ids, # type: ignore
attention_mask=attention_mask, # type: ignore
position_ids=position_ids,
labels=labels,
)
else:
inputs_embeds, indices, cu_seqlens, max_seqlen, position_ids, labels = _unpad_modernbert_input(
inputs=inputs_embeds,
attention_mask=attention_mask, # type: ignore
position_ids=position_ids,
labels=labels,
)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
sliding_window_mask=sliding_window_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
indices=indices,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
batch_size=batch_size,
seq_len=seq_len,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = outputs[0]
if self.sparse_prediction and labels is not None:
# flatten labels and output first
labels = labels.view(-1)
last_hidden_state = last_hidden_state.view(labels.shape[0], -1)
# then filter out the non-masked tokens
mask_tokens = labels != self.sparse_pred_ignore_index
last_hidden_state = last_hidden_state[mask_tokens]
labels = labels[mask_tokens]
logits = (
self.compiled_head(last_hidden_state)
if self.config.reference_compile
else self.decoder(self.head(last_hidden_state))
)
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, vocab_size=self.config.vocab_size, **kwargs)
if self.config._attn_implementation == "flash_attention_2":
with nullcontext() if self.config.repad_logits_with_grad or labels is None else torch.no_grad():
logits = _pad_modernbert_output(inputs=logits, indices=indices, batch=batch_size, seqlen=seq_len) # type: ignore
if not return_dict:
output = (logits,)
return ((loss,) + output) if loss is not None else output
return MaskedLMOutput(
loss=loss,
logits=typing.cast(torch.FloatTensor, logits),
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class ModChemBertForSequenceClassification(InitWeightsMixin, ModernBertPreTrainedModel):
config_class = ModChemBertConfig
def __init__(self, config: ModChemBertConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.model = ModernBertModel(config)
if self.config.classifier_pooling in {"cls_mha", "max_seq_mha"}:
self.pooling_attn = ModChemBertPoolingAttention(config=self.config)
else:
self.pooling_attn = None
self.head = ModernBertPredictionHead(config)
self.drop = torch.nn.Dropout(config.classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: torch.LongTensor | None = None,
attention_mask: torch.Tensor | None = None,
sliding_window_mask: torch.Tensor | None = None,
position_ids: torch.Tensor | None = None,
inputs_embeds: torch.Tensor | None = None,
labels: torch.Tensor | None = None,
indices: torch.Tensor | None = None,
cu_seqlens: torch.Tensor | None = None,
max_seqlen: int | None = None,
batch_size: int | None = None,
seq_len: int | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
**kwargs,
) -> tuple[torch.Tensor] | tuple[torch.Tensor, typing.Any] | SequenceClassifierOutput:
r"""
sliding_window_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding or far-away tokens. In ModernBert, only every few layers
perform global attention, while the rest perform local attention. This mask is used to avoid attending to
far-away tokens in the local attention layers when not using Flash Attention.
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
indices (`torch.Tensor` of shape `(total_unpadded_tokens,)`, *optional*):
Indices of the non-padding tokens in the input sequence. Used for unpadding the output.
cu_seqlens (`torch.Tensor` of shape `(batch + 1,)`, *optional*):
Cumulative sequence lengths of the input sequences. Used to index the unpadded tensors.
max_seqlen (`int`, *optional*):
Maximum sequence length in the batch excluding padding tokens. Used to unpad input_ids & pad output tensors.
batch_size (`int`, *optional*):
Batch size of the input sequences. Used to pad the output tensors.
seq_len (`int`, *optional*):
Sequence length of the input sequences including padding tokens. Used to pad the output tensors.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
self._maybe_set_compile()
if input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
if batch_size is None and seq_len is None:
if inputs_embeds is not None:
batch_size, seq_len = inputs_embeds.shape[:2]
else:
batch_size, seq_len = input_ids.shape[:2] # type: ignore
device = input_ids.device if input_ids is not None else inputs_embeds.device # type: ignore
if attention_mask is None:
attention_mask = torch.ones((batch_size, seq_len), device=device, dtype=torch.bool) # type: ignore
# Ensure output_hidden_states is True in case pooling mode requires all hidden states
output_hidden_states = True
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
sliding_window_mask=sliding_window_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
indices=indices,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
batch_size=batch_size,
seq_len=seq_len,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = outputs[0]
hidden_states = outputs[1]
last_hidden_state = _pool_modchembert_output(
self,
last_hidden_state,
hidden_states,
typing.cast(torch.Tensor, attention_mask),
)
pooled_output = self.head(last_hidden_state)
pooled_output = self.drop(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,)
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def _pool_modchembert_output(
module: ModChemBertForSequenceClassification,
last_hidden_state: torch.Tensor,
hidden_states: list[torch.Tensor],
attention_mask: torch.Tensor,
):
"""
Apply pooling strategy to hidden states for sequence-level classification/regression tasks.
This function implements various pooling strategies to aggregate sequence representations
into a single vector for downstream classification or regression tasks. The pooling method
is determined by the `classifier_pooling` configuration parameter.
Available pooling strategies:
- cls: Use the CLS token ([CLS]) representation from the last hidden state
- mean: Average pooling over all tokens in the sequence (attention-weighted)
- max_cls: Element-wise max pooling over the last k hidden states, then take CLS token
- cls_mha: Multi-head attention with CLS token as query and full sequence as keys/values
- max_seq_mha: Max pooling over last k states + multi-head attention with CLS as query
- max_seq_mean: Max pooling over last k hidden states, then mean pooling over sequence
- sum_mean: Sum all hidden states across layers, then mean pool over sequence
- sum_sum: Sum all hidden states across layers, then sum pool over sequence
- mean_sum: Mean all hidden states across layers, then sum pool over sequence
- mean_mean: Mean all hidden states across layers, then mean pool over sequence
Args:
module: The model instance containing configuration and pooling attention if needed
last_hidden_state: Final layer hidden states of shape (batch_size, seq_len, hidden_size)
hidden_states: List of hidden states from all layers, each of shape (batch_size, seq_len, hidden_size)
attention_mask: Attention mask of shape (batch_size, seq_len) indicating valid tokens
Returns:
torch.Tensor: Pooled representation of shape (batch_size, hidden_size)
Note:
Some pooling strategies (cls_mha, max_seq_mha) require the module to have a pooling_attn
attribute containing a ModChemBertPoolingAttention instance.
"""
config = typing.cast(ModChemBertConfig, module.config)
if config.classifier_pooling == "cls":
last_hidden_state = last_hidden_state[:, 0]
elif config.classifier_pooling == "mean":
last_hidden_state = (last_hidden_state * attention_mask.unsqueeze(-1)).sum(dim=1) / attention_mask.sum(
dim=1, keepdim=True
)
elif config.classifier_pooling == "max_cls":
k_hidden_states = hidden_states[-config.classifier_pooling_last_k :]
theta = torch.stack(k_hidden_states, dim=1) # (batch, k, seq_len, hidden)
pooled_seq = torch.max(theta, dim=1).values # Element-wise max over k -> (batch, seq_len, hidden)
last_hidden_state = pooled_seq[:, 0, :] # (batch, hidden)
elif config.classifier_pooling == "cls_mha":
# Similar to max_seq_mha but without the max pooling step
# Query is CLS token (position 0); Keys/Values are full sequence
q = last_hidden_state[:, 0, :].unsqueeze(1) # (batch, 1, hidden)
q = q.expand(-1, last_hidden_state.shape[1], -1) # (batch, seq_len, hidden)
attn_out: torch.Tensor = module.pooling_attn( # type: ignore
q=q, kv=last_hidden_state, attention_mask=attention_mask
) # (batch, seq_len, hidden)
last_hidden_state = torch.mean(attn_out, dim=1)
elif config.classifier_pooling == "max_seq_mha":
k_hidden_states = hidden_states[-config.classifier_pooling_last_k :]
theta = torch.stack(k_hidden_states, dim=1) # (batch, k, seq_len, hidden)
pooled_seq = torch.max(theta, dim=1).values # Element-wise max over k -> (batch, seq_len, hidden)
# Query is pooled CLS token (position 0); Keys/Values are pooled sequence
q = pooled_seq[:, 0, :].unsqueeze(1) # (batch, 1, hidden)
q = q.expand(-1, pooled_seq.shape[1], -1) # (batch, seq_len, hidden)
attn_out: torch.Tensor = module.pooling_attn( # type: ignore
q=q, kv=pooled_seq, attention_mask=attention_mask
) # (batch, seq_len, hidden)
last_hidden_state = torch.mean(attn_out, dim=1)
elif config.classifier_pooling == "max_seq_mean":
k_hidden_states = hidden_states[-config.classifier_pooling_last_k :]
theta = torch.stack(k_hidden_states, dim=1) # (batch, k, seq_len, hidden)
pooled_seq = torch.max(theta, dim=1).values # Element-wise max over k -> (batch, seq_len, hidden)
last_hidden_state = torch.mean(pooled_seq, dim=1) # Mean over sequence length
elif config.classifier_pooling == "sum_mean":
# ChemLM uses the mean of all hidden states
# which outperforms using just the last layer mean or the cls embedding
# https://doi.org/10.1038/s42004-025-01484-4
# https://static-content.springer.com/esm/art%3A10.1038%2Fs42004-025-01484-4/MediaObjects/42004_2025_1484_MOESM2_ESM.pdf
all_hidden_states = torch.stack(hidden_states)
w = torch.sum(all_hidden_states, dim=0)
last_hidden_state = torch.mean(w, dim=1)
elif config.classifier_pooling == "sum_sum":
all_hidden_states = torch.stack(hidden_states)
w = torch.sum(all_hidden_states, dim=0)
last_hidden_state = torch.sum(w, dim=1)
elif config.classifier_pooling == "mean_sum":
all_hidden_states = torch.stack(hidden_states)
w = torch.mean(all_hidden_states, dim=0)
last_hidden_state = torch.sum(w, dim=1)
elif config.classifier_pooling == "mean_mean":
all_hidden_states = torch.stack(hidden_states)
w = torch.mean(all_hidden_states, dim=0)
last_hidden_state = torch.mean(w, dim=1)
return last_hidden_state
__all__ = [
"ModChemBertForMaskedLM",
"ModChemBertForSequenceClassification",
]
|