Continual-Mega commited on
Commit
b056b40
·
verified ·
1 Parent(s): 940092e

Upload eval_zero.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. eval_zero.py +220 -0
eval_zero.py ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import argparse
3
+ import random
4
+ import numpy as np
5
+ import torch
6
+ from torch.nn import functional as F
7
+ from tqdm import tqdm
8
+ from CLIP.clip import create_model
9
+ from CLIP.adapter import CLIPAD
10
+ from sklearn.metrics import roc_auc_score, average_precision_score
11
+ from dataset.continual import ImageDataset
12
+ import csv
13
+ import logging
14
+ from CoOp import PromptMaker
15
+ import json
16
+ from safetensors.torch import load_file
17
+
18
+ os.environ["TOKENIZERS_PARALLELISM"] = "false"
19
+
20
+ import warnings
21
+ warnings.filterwarnings("ignore")
22
+
23
+ def setup_seed(seed):
24
+ os.environ['PYTHONHASHSEED'] = str(seed)
25
+ torch.manual_seed(seed)
26
+ torch.cuda.manual_seed_all(seed)
27
+ np.random.seed(seed)
28
+ random.seed(seed)
29
+
30
+ def get_logger(output_dir):
31
+ # set log file
32
+ log_file = f"{output_dir}/log.log"
33
+ head = '%(asctime)-15s %(message)s'
34
+ logging.basicConfig(filename=log_file,
35
+ format=head)
36
+ logger = logging.getLogger()
37
+ logger.setLevel(logging.INFO)
38
+ console = logging.StreamHandler()
39
+ logging.getLogger('').addHandler(console)
40
+
41
+ return logger
42
+
43
+ def main():
44
+ parser = argparse.ArgumentParser(description='Evaluation')
45
+ parser.add_argument('--model_name', type=str, default='ViT-L-14-336', help="ViT-B-16-plus-240, ViT-L-14-336")
46
+ parser.add_argument('--pretrain', type=str, default='openai', help="laion400m, openai")
47
+ parser.add_argument('--img_size', type=int, default=336)
48
+ parser.add_argument("--features_list", type=int, nargs="+", default=[6, 12, 18, 24], help="features used")
49
+ parser.add_argument('--seed', type=int, default=111)
50
+ parser.add_argument('--gpu', type=str, default="0")
51
+ parser.add_argument("--meta_file", type=str, default="meta_files/meta_mvtec.json")
52
+ parser.add_argument("--n_learnable_token", type=int, default=8, help="number of learnable token")
53
+ parser.add_argument("--adapter_ckpt", type=str, default="scenario2/30classes/adapters_sc2_task2.safetensors", help="adapter checkpoint path")
54
+ parser.add_argument("--prompt_makder_ckpt", type=str, default="scenario2/30classes/prompt_maker_sc2.safetensors", help="prompt maker checkpoint path")
55
+ parser.add_argument("--save_path", type=str, default="results_zero")
56
+ parser.add_argument("--data_root", type=str, default="data/mvtec_anomaly_detection")
57
+
58
+ args = parser.parse_args()
59
+
60
+ setup_seed(args.seed)
61
+
62
+ use_cuda = torch.cuda.is_available()
63
+ device = torch.device("cuda:{}".format(args.gpu) if use_cuda else "cpu")
64
+
65
+ save_path = args.save_path
66
+ if not os.path.isdir(save_path):
67
+ os.makedirs(save_path)
68
+
69
+ # for logging
70
+ logger = get_logger(save_path)
71
+ logger.info(args)
72
+
73
+ # fixed feature extractor
74
+ clip_model = create_model(model_name=args.model_name, img_size=args.img_size, device=device, pretrained=args.pretrain, require_pretrained=True)
75
+
76
+ # prompt learner
77
+ prompts = {
78
+ "normal": [
79
+ "This is an example of a normal object",
80
+ "This is a typical appearance of the object",
81
+ "This is what a normal object looks like",
82
+ "A photo of a normal object",
83
+ "This is not an anomaly",
84
+ "This is an example of a standard object.",
85
+ "This is the standard appearance of the object.",
86
+ "This is what a standard object looks like.",
87
+ "A photo of a standard object.",
88
+ "This object meets standard characteristics."
89
+ ],
90
+ "abnormal": [
91
+ "This is an example of an anomalous object",
92
+ "This is not the typical appearance of the object",
93
+ "This is what an anomaly looks like",
94
+ "A photo of an anomalous object",
95
+ "An anomaly detected in this object",
96
+ "This is an example of an abnormal object.",
97
+ "This is not the usual appearance of the object.",
98
+ "This is what an abnormal object looks like.",
99
+ "A photo of an abnormal object.",
100
+ "An abnormality detected in this object."
101
+ ]
102
+ }
103
+
104
+ clip_model.device = device
105
+ clip_model.to(device)
106
+
107
+ prompt_maker = PromptMaker(
108
+ prompts=prompts,
109
+ clip_model=clip_model,
110
+ n_ctx= args.n_learnable_token,
111
+ CSC = True,
112
+ class_token_position=['end'],
113
+ ).to(device)
114
+
115
+ model = CLIPAD(clip_model=clip_model, features=args.features_list)
116
+ model.to(device)
117
+ model.eval()
118
+
119
+ # load checkpoint
120
+ adpater_state_dict = load_file(args.adapter_ckpt)
121
+ model.adapters.load_state_dict(adpater_state_dict)
122
+ logger.info(f"load adapter from {args.adapter_ckpt}")
123
+ prompt_state_dict = load_file(args.prompt_makder_ckpt)
124
+ prompt_maker.prompt_learner.load_state_dict(prompt_state_dict)
125
+ logger.info(f"load prompt maker from {args.prompt_makder_ckpt}")
126
+
127
+ kwargs = {'num_workers': 4, 'pin_memory': True} if use_cuda else {}
128
+
129
+ prompt_maker.eval()
130
+ model.eval()
131
+
132
+ logging.info(f"start zero shot {args.meta_file} test")
133
+ task_meta = json.load(open(args.meta_file, 'r'))
134
+
135
+ class_name_list = list(task_meta["test"].keys())
136
+ test_dataset_list = [ImageDataset(data_root=args.data_root, meta_file=task_meta, resize=args.img_size, mode="test", test_class=class_name) for class_name in class_name_list]
137
+ test_loader_list = [torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False, **kwargs) for test_dataset in test_dataset_list]
138
+
139
+ with torch.cuda.amp.autocast(), torch.no_grad():
140
+ # test all class
141
+ seg_ap_list = []
142
+ img_auc_list = []
143
+ prompt_maker.eval()
144
+ model.eval()
145
+ text_features = prompt_maker()
146
+
147
+ for test_loader, class_name in zip(test_loader_list, class_name_list):
148
+ logger.info(f"start test {class_name}")
149
+ roc_auc_im, seg_ap = test(args, model, test_loader, text_features, device)
150
+ logger.info(f'{class_name} P-AP : {round(seg_ap,4)}')
151
+ logger.info(f'{class_name} I-AUC : {round(roc_auc_im, 4)}')
152
+ seg_ap_list.append(seg_ap)
153
+ img_auc_list.append(roc_auc_im)
154
+
155
+ seg_ap_mean = np.mean(seg_ap_list)
156
+ img_auc_mean = np.mean(img_auc_list)
157
+
158
+ logger.info(f'Average P-AP : {round(seg_ap_mean,4)}')
159
+ logger.info(f'Average I-AUC : {round(img_auc_mean, 4)}')
160
+
161
+
162
+ def test(args, model, test_loader, text_features, device):
163
+ gt_list = []
164
+ gt_mask_list = []
165
+
166
+ seg_score_map_zero = []
167
+ image_scores = []
168
+ for data in tqdm(test_loader):
169
+ image, mask, cls_name, label = data['image'], data['mask'], data['cls_name'], data['anomaly']
170
+ image = image.to(device)
171
+ mask[mask > 0.5], mask[mask <= 0.5] = 1, 0
172
+
173
+ with torch.no_grad(), torch.cuda.amp.autocast():
174
+ _, ada_patch_tokens = model(image)
175
+ ada_patch_tokens = [p[0, 1:, :] for p in ada_patch_tokens]
176
+
177
+ anomaly_maps = []
178
+ image_score = 0
179
+ for layer in range(len(ada_patch_tokens)):
180
+ ada_patch_tokens[layer] /= ada_patch_tokens[layer].norm(dim=-1, keepdim=True)
181
+ anomaly_map = (100.0 * ada_patch_tokens[layer] @ text_features).unsqueeze(0)
182
+ B, L, C = anomaly_map.shape
183
+ H = int(np.sqrt(L))
184
+
185
+ # image
186
+ anomaly_score = torch.softmax(anomaly_map, dim=-1)[:, :, 1]
187
+ image_score += anomaly_score.max()
188
+
189
+ anomaly_maps.append(anomaly_map)
190
+
191
+ score_map = torch.mean(torch.stack(anomaly_maps, dim=1), dim=1)
192
+ score_map = F.interpolate(score_map.permute(0, 2, 1).view(B, 2, H, H),
193
+ size=args.img_size, mode='bilinear', align_corners=True)
194
+ score_map = torch.softmax(score_map, dim=1)[:, 1, :, :]
195
+ score_map = score_map.squeeze(0).cpu().numpy()
196
+ seg_score_map_zero.append(score_map)
197
+ image_scores.append(image_score.cpu() / len(ada_patch_tokens))
198
+
199
+ gt_mask_list.append(mask.squeeze().cpu().detach().numpy())
200
+ gt_list.extend(label.cpu().detach().numpy())
201
+
202
+
203
+ gt_list = np.array(gt_list)
204
+ gt_mask_list = np.asarray(gt_mask_list)
205
+ gt_mask_list = (gt_mask_list>0).astype(np.int_)
206
+
207
+ segment_scores = np.array(seg_score_map_zero)
208
+ image_scores = np.array(image_scores)
209
+
210
+ roc_auc_im = roc_auc_score(gt_list, image_scores)
211
+
212
+ seg_pr = average_precision_score(gt_mask_list.flatten(), segment_scores.flatten())
213
+
214
+ return roc_auc_im, seg_pr
215
+
216
+
217
+ if __name__ == '__main__':
218
+ main()
219
+
220
+