Update README.md
Browse files
README.md
CHANGED
|
@@ -1,16 +1,80 @@
|
|
| 1 |
---
|
| 2 |
-
library_name: transformers
|
| 3 |
-
pipeline_tag: text-generation
|
| 4 |
tags:
|
| 5 |
-
- text-generation
|
| 6 |
- medical
|
| 7 |
- loRA
|
| 8 |
- 4bit
|
| 9 |
-
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
# DeepSeek-V2-medical
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
This repository contains a 4-bit LoRA fine-tuned adapter on top of [deepseek-ai/DeepSeek-V2-Lite](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite) for medical treatment planning.
|
| 15 |
|
| 16 |
## Model Card
|
|
|
|
| 1 |
---
|
|
|
|
|
|
|
| 2 |
tags:
|
|
|
|
| 3 |
- medical
|
| 4 |
- loRA
|
| 5 |
- 4bit
|
| 6 |
+
- conversational
|
| 7 |
+
pipeline_tag: text-generation
|
| 8 |
---
|
| 9 |
|
| 10 |
# DeepSeek-V2-medical
|
| 11 |
|
| 12 |
+
This repository contains a 4-bit LoRA adapter fine-tuned on top of [deepseek-ai/DeepSeek-V2-Lite](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite) for **medical treatment planning**.
|
| 13 |
+
|
| 14 |
+
- **Base model**: `deepseek-ai/DeepSeek-V2-Lite` (4-bit quantized)
|
| 15 |
+
- **Adapter**: LoRA, trained on clinical vignette → treatment plan pairs
|
| 16 |
+
- **Tokenizer**: same as base, with `pad_token` set to `eos`
|
| 17 |
+
|
| 18 |
+
## Usage
|
| 19 |
+
|
| 20 |
+
```python
|
| 21 |
+
from transformers import AutoTokenizer, BitsAndBytesConfig
|
| 22 |
+
from peft import PeftModel
|
| 23 |
+
import torch
|
| 24 |
+
|
| 25 |
+
# 1) Load tokenizer + adapter
|
| 26 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 27 |
+
"CodCodingCode/DeepSeek-V2-medical",
|
| 28 |
+
trust_remote_code=True
|
| 29 |
+
)
|
| 30 |
+
tokenizer.pad_token_id = tokenizer.pad_token_id or tokenizer.eos_token_id
|
| 31 |
+
|
| 32 |
+
bnb = BitsAndBytesConfig(
|
| 33 |
+
load_in_4bit=True,
|
| 34 |
+
bnb_4bit_quant_type="nf4",
|
| 35 |
+
bnb_4bit_compute_dtype=torch.float16,
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
# 2) Reload the base quantized model
|
| 39 |
+
from transformers import AutoModelForCausalLM
|
| 40 |
+
base = AutoModelForCausalLM.from_pretrained(
|
| 41 |
+
"deepseek-ai/DeepSeek-V2-Lite",
|
| 42 |
+
quantization_config=bnb,
|
| 43 |
+
device_map="auto",
|
| 44 |
+
trust_remote_code=True,
|
| 45 |
+
)
|
| 46 |
+
base.resize_token_embeddings(len(tokenizer))
|
| 47 |
+
|
| 48 |
+
# 3) Attach your LoRA adapter
|
| 49 |
+
model = PeftModel.from_pretrained(
|
| 50 |
+
base,
|
| 51 |
+
"CodCodingCode/DeepSeek-V2-medical",
|
| 52 |
+
device_map="auto",
|
| 53 |
+
torch_dtype=torch.float16,
|
| 54 |
+
trust_remote_code=True,
|
| 55 |
+
)
|
| 56 |
+
model.config.use_cache = False # match your training config
|
| 57 |
+
|
| 58 |
+
# 4) Generate
|
| 59 |
+
prompt = (
|
| 60 |
+
"### Instruction:\n"
|
| 61 |
+
"You are a board-certified clinician ...\n\n"
|
| 62 |
+
"### Input:\n"
|
| 63 |
+
"THINKING: ...\n\n"
|
| 64 |
+
"### Response:\n"
|
| 65 |
+
)
|
| 66 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 67 |
+
outputs = model.generate(
|
| 68 |
+
**inputs,
|
| 69 |
+
max_new_tokens=256,
|
| 70 |
+
do_sample=True,
|
| 71 |
+
temperature=0.2,
|
| 72 |
+
top_p=0.95,
|
| 73 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 74 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 75 |
+
)
|
| 76 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 77 |
+
|
| 78 |
This repository contains a 4-bit LoRA fine-tuned adapter on top of [deepseek-ai/DeepSeek-V2-Lite](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite) for medical treatment planning.
|
| 79 |
|
| 80 |
## Model Card
|