File size: 12,543 Bytes
c10c765
 
44df5fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c10c765
 
44df5fa
c10c765
44df5fa
c10c765
 
 
 
 
44df5fa
c10c765
44df5fa
 
 
 
 
c10c765
44df5fa
c10c765
44df5fa
 
 
c10c765
44df5fa
c10c765
44df5fa
c10c765
44df5fa
 
 
 
 
 
 
 
 
 
c10c765
44df5fa
c10c765
 
 
44df5fa
c10c765
44df5fa
 
 
 
 
c10c765
44df5fa
c10c765
44df5fa
c10c765
44df5fa
 
 
 
 
c10c765
 
 
44df5fa
c10c765
44df5fa
 
 
 
c10c765
 
 
44df5fa
c10c765
44df5fa
 
 
 
c10c765
 
 
44df5fa
c10c765
44df5fa
 
 
 
c10c765
 
 
44df5fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c10c765
 
 
 
 
44df5fa
c10c765
 
 
 
 
44df5fa
c10c765
44df5fa
 
 
 
 
 
 
c10c765
44df5fa
c10c765
44df5fa
 
 
c10c765
 
 
 
 
 
 
44df5fa
c10c765
 
 
44df5fa
c10c765
44df5fa
 
 
c10c765
 
 
44df5fa
c10c765
44df5fa
 
 
 
 
 
 
 
c10c765
44df5fa
c10c765
44df5fa
c10c765
44df5fa
 
 
 
c10c765
44df5fa
c10c765
44df5fa
c10c765
44df5fa
c10c765
44df5fa
 
 
 
 
 
 
c10c765
44df5fa
c10c765
44df5fa
c10c765
44df5fa
c10c765
44df5fa
 
 
c10c765
44df5fa
c10c765
44df5fa
 
 
 
 
c10c765
44df5fa
c10c765
44df5fa
c10c765
44df5fa
 
 
 
c10c765
44df5fa
 
 
 
c10c765
44df5fa
c10c765
44df5fa
 
 
 
c10c765
44df5fa
c10c765
 
 
44df5fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c10c765
 
 
44df5fa
c10c765
44df5fa
c10c765
44df5fa
c10c765
44df5fa
c10c765
44df5fa
c10c765
44df5fa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
---
library_name: transformers
license: apache-2.0
datasets:
- Chillarmo/common_voice_20_armenian
language:
- hy
metrics:
- cer
- wer
- exact_match
base_model:
- openai/whisper-large-v3-turbo
pipeline_tag: automatic-speech-recognition
model-index:
- name: whisper-large-v3-turbo-armenian
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      type: Chillarmo/common_voice_20_armenian
      name: Common Voice 20 Armenian
    metrics:
    - type: wer
      value: 15.31
      name: Word Error Rate
    - type: cer
      value: 2.86
      name: Character Error Rate
    - type: exact_match
      value: 42.73
      name: Exact Match
tags:
- speech-recognition
- armenian
- whisper
- fine-tuned
- large-v3-turbo
---

# Whisper Large v3 Turbo Armenian: High-Performance Armenian Speech Recognition

This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the [Chillarmo/common_voice_20_armenian](https://huggingface.co/datasets/Chillarmo/common_voice_20_armenian) dataset. This model represents a significant advancement in Armenian automatic speech recognition, achieving state-of-the-art performance with substantially improved accuracy compared to smaller variants.

## Model Details

### Model Description

This is a fine-tuned Whisper Large v3 Turbo model specifically optimized for Armenian speech recognition. The model leverages the latest Whisper architecture improvements while maintaining the efficiency of the Turbo variant, providing an optimal balance between performance and computational requirements for Armenian language processing.

- **Developed by:** Movses Movsesyan (Independent Research)
- **Model type:** Automatic Speech Recognition
- **Language(s):** Armenian (hy)
- **License:** Apache 2.0
- **Finetuned from model:** [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo)

### Model Sources

- **Repository:** [Hugging Face Model Hub](https://huggingface.co/models)
- **Base Model:** [OpenAI Whisper](https://github.com/openai/whisper)
- **Paper:** [Robust Speech Recognition via Large-Scale Weak Supervision](https://arxiv.org/abs/2212.04356)

## Performance Highlights

๐Ÿš€ **Exceptional Accuracy**: Achieves a **15.31% WER** and **2.86% CER** - representing significant improvements over smaller models:

| Model | WER | CER | Exact Match |
|-------|-----|-----|-------------|
| **Whisper Large v3 Turbo Armenian** | **15.31%** | **2.86%** | **42.73%** |
| Whisper Small Armenian v2 | 24.01% | 4.77% | 28.14% |

**Key Improvements:**
- **36% reduction** in Word Error Rate compared to the small model
- **40% reduction** in Character Error Rate
- **52% improvement** in Exact Match accuracy
- Superior performance while maintaining efficient inference speed

## Uses

### Direct Use

This model excels at transcribing Armenian speech to text with high accuracy, making it suitable for:

- **Production-grade** Armenian speech transcription systems
- Real-time Armenian voice interfaces with minimal errors
- Professional Armenian media content processing
- High-accuracy Armenian voice assistants and applications
- Academic and research applications in Armenian computational linguistics

### Downstream Use

The model can be integrated into enterprise and research applications such as:

- Professional Armenian voice assistants and chatbots
- High-quality subtitle generation for Armenian media
- Accessibility tools requiring high transcription accuracy
- Educational platforms for Armenian language learning
- Call center analytics and voice processing systems

### Out-of-Scope Use

This model should not be used for:

- Speech recognition in languages other than Armenian
- Speaker identification or verification tasks
- Audio classification beyond speech transcription
- Critical applications requiring 100% accuracy (medical/legal without human review)

## Bias, Risks, and Limitations

While this model achieves excellent performance, users should be aware of:

- **Domain specificity:** Performance may vary across different speaking styles and domains
- **Audio quality dependency:** Optimal performance requires reasonably clear audio input
- **Dialectal variations:** Performance may vary across different Armenian dialects
- **Computational requirements:** Larger model size requires more computational resources than smaller variants

### Recommendations

For optimal results:

- Test thoroughly on your specific use case and audio conditions
- Implement appropriate error handling and confidence thresholds
- Consider computational requirements when deploying at scale
- Monitor performance across different speaker demographics and accents

## How to Get Started with the Model

Use the code below to get started with the model:

```python
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
import torch

# Load the processor and model
processor = AutoProcessor.from_pretrained("Chillarmo/whisper-large-v3-turbo-armenian")
model = AutoModelForSpeechSeq2Seq.from_pretrained("Chillarmo/whisper-large-v3-turbo-armenian")

# Enable half precision for faster inference (optional)
model = model.half()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

def transcribe_armenian(audio_path):
    """
    Transcribe Armenian audio file to text
    
    Args:
        audio_path (str): Path to audio file
        
    Returns:
        str: Transcribed text
    """
    import librosa
    
    # Load and process audio file
    audio, sr = librosa.load(audio_path, sr=16000)
    
    # Process the audio
    inputs = processor(audio, sampling_rate=16000, return_tensors="pt")
    inputs = inputs.to(device)
    
    # Generate transcription
    with torch.no_grad():
        predicted_ids = model.generate(
            inputs["input_features"],
            max_new_tokens=448,
            do_sample=False,
            use_cache=True
        )
    
    # Decode the transcription
    transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
    return transcription[0]

# Example usage
# transcription = transcribe_armenian("path/to/armenian_audio.wav")
# print(f"Transcription: {transcription}")
```

### Batch Processing Example

```python
def transcribe_batch(audio_files):
    """
    Transcribe multiple audio files efficiently
    
    Args:
        audio_files (list): List of audio file paths
        
    Returns:
        list: List of transcriptions
    """
    transcriptions = []
    
    for audio_file in audio_files:
        transcription = transcribe_armenian(audio_file)
        transcriptions.append(transcription)
        
    return transcriptions

# Example batch processing
# audio_files = ["audio1.wav", "audio2.wav", "audio3.wav"]
# results = transcribe_batch(audio_files)
```

## Training Details

### Training Data

The model was fine-tuned on the [Chillarmo/common_voice_20_armenian](https://huggingface.co/datasets/Chillarmo/common_voice_20_armenian) dataset, utilizing the same high-quality Armenian speech data that has proven effective for Armenian speech recognition tasks.

### Training Procedure

#### Training Hyperparameters

The following hyperparameters were used during training:

- **Training regime:** Mixed precision training with optimized settings for Large v3 Turbo
- **Epochs:** 2.65 (optimal convergence achieved)
- **Training runtime:** 48,521 seconds (approximately 13.5 hours)
- **Training samples per second:** 1.649
- **Training steps per second:** 0.103
- **Final training loss:** 0.106
- **Total training steps:** 5,000

#### Performance Metrics During Training

- **Final evaluation loss:** 0.069
- **Training efficiency:** Optimized for the Large v3 Turbo architecture
- **Convergence:** Achieved excellent performance within 2.65 epochs

## Evaluation

### Testing Data, Factors & Metrics

#### Testing Data

The model was evaluated on a held-out test set from the Chillarmo/common_voice_20_armenian dataset using the same evaluation methodology as the baseline models for fair comparison.

#### Metrics

The model was evaluated using standard speech recognition metrics:

- **Word Error Rate (WER):** Percentage of words incorrectly transcribed
- **Character Error Rate (CER):** Percentage of characters incorrectly transcribed  
- **Exact Match:** Percentage of utterances transcribed perfectly

### Results

The fine-tuned model achieved exceptional performance on the evaluation set:

| Metric | Value | Improvement vs Small Model |
|--------|-------|---------------------------|
| **Word Error Rate (WER)** | **15.31%** | **-36.2%** (24.01% โ†’ 15.31%) |
| **Character Error Rate (CER)** | **2.86%** | **-40.0%** (4.77% โ†’ 2.86%) |
| **Exact Match** | **42.73%** | **+51.8%** (28.14% โ†’ 42.73%) |
| **Average Prediction Length** | 7.76 tokens | Consistent with ground truth |
| **Average Label Length** | 7.77 tokens | - |
| **Length Ratio** | 0.999 | Excellent length calibration |

#### Performance Analysis

The results demonstrate exceptional performance characteristics:

- **Superior accuracy:** Significant improvements across all metrics compared to smaller models
- **Length calibration:** Near-perfect length ratio (0.999) indicates excellent model calibration
- **Consistency:** High exact match rate (42.73%) shows the model frequently produces perfect transcriptions
- **Robustness:** Low character error rate (2.86%) indicates strong character-level understanding

## Technical Specifications

### Model Architecture and Objective

This model is based on the Whisper Large v3 Turbo architecture, featuring:

- **Encoder:** Advanced Transformer encoder processing mel-spectrogram features
- **Decoder:** Optimized Transformer decoder for efficient text generation
- **Architecture:** Enhanced Transformer sequence-to-sequence model
- **Model size:** Large v3 Turbo (optimized for efficiency)
- **Input:** 128-dimensional log mel-spectrograms
- **Output:** High-accuracy Armenian text transcriptions
- **Special features:** Turbo optimizations for faster inference while maintaining quality

### Compute Infrastructure

#### Hardware

Training was performed on the following hardware configuration:

- **Training duration:** ~13.5 hours for optimal convergence
- **Computational efficiency:** Optimized training pipeline for Large v3 Turbo architecture
- **Memory optimization:** Efficient memory usage during training and inference

#### Software

- **Framework:** Hugging Face Transformers (latest version)
- **Training library:** PyTorch with advanced optimization
- **Audio processing:** librosa, soundfile
- **Evaluation:** datasets, evaluate, jiwer
- **Optimization:** Mixed precision training for efficiency

## Deployment Considerations

### Hardware Requirements

**Minimum Requirements:**
- GPU: 8GB VRAM (for optimal performance)
- CPU: Modern multi-core processor
- RAM: 16GB system memory

**Recommended for Production:**
- GPU: 16GB+ VRAM for batch processing
- CPU: High-performance multi-core processor
- RAM: 32GB+ for large-scale deployment

### Performance Optimization Tips

1. **Use half precision** (`model.half()`) for faster inference
2. **Batch processing** for multiple audio files
3. **GPU acceleration** strongly recommended
4. **Caching** enabled for repeated inference tasks

## Citation

**BibTeX:**

```bibtex
@misc{movsesyan2025whisper-large-v3-turbo-armenian,
  author = {Movsesyan, Movses},
  title = {Whisper Large v3 Turbo Armenian},
  year = {2025},
  publisher = {Hugging Face},
  url = {https://huggingface.co/Chillarmo/whisper-large-v3-turbo-armenian}
}

@article{radford2022robust,
  title={Robust speech recognition via large-scale weak supervision},
  author={Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya},
  journal={International Conference on Machine Learning},
  pages={28492--28518},
  year={2023},
  organization={PMLR}
}
```

**APA:**

Movsesyan, M. (2025). Whisper Large v3 Turbo Armenian. Hugging Face. https://huggingface.co/Chillarmo/whisper-large-v3-turbo-armenian

## Model Card Authors

This model card was created by Movses Movsesyan based on the fine-tuning results and comprehensive performance evaluation of the Whisper Large v3 Turbo Armenian model.

---

## Acknowledgments

Special thanks to the OpenAI team for the Whisper architecture and the Common Voice project contributors for providing high-quality Armenian speech data that made this research possible.