File size: 12,543 Bytes
c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa c10c765 44df5fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
---
library_name: transformers
license: apache-2.0
datasets:
- Chillarmo/common_voice_20_armenian
language:
- hy
metrics:
- cer
- wer
- exact_match
base_model:
- openai/whisper-large-v3-turbo
pipeline_tag: automatic-speech-recognition
model-index:
- name: whisper-large-v3-turbo-armenian
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
type: Chillarmo/common_voice_20_armenian
name: Common Voice 20 Armenian
metrics:
- type: wer
value: 15.31
name: Word Error Rate
- type: cer
value: 2.86
name: Character Error Rate
- type: exact_match
value: 42.73
name: Exact Match
tags:
- speech-recognition
- armenian
- whisper
- fine-tuned
- large-v3-turbo
---
# Whisper Large v3 Turbo Armenian: High-Performance Armenian Speech Recognition
This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the [Chillarmo/common_voice_20_armenian](https://huggingface.co/datasets/Chillarmo/common_voice_20_armenian) dataset. This model represents a significant advancement in Armenian automatic speech recognition, achieving state-of-the-art performance with substantially improved accuracy compared to smaller variants.
## Model Details
### Model Description
This is a fine-tuned Whisper Large v3 Turbo model specifically optimized for Armenian speech recognition. The model leverages the latest Whisper architecture improvements while maintaining the efficiency of the Turbo variant, providing an optimal balance between performance and computational requirements for Armenian language processing.
- **Developed by:** Movses Movsesyan (Independent Research)
- **Model type:** Automatic Speech Recognition
- **Language(s):** Armenian (hy)
- **License:** Apache 2.0
- **Finetuned from model:** [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo)
### Model Sources
- **Repository:** [Hugging Face Model Hub](https://huggingface.co/models)
- **Base Model:** [OpenAI Whisper](https://github.com/openai/whisper)
- **Paper:** [Robust Speech Recognition via Large-Scale Weak Supervision](https://arxiv.org/abs/2212.04356)
## Performance Highlights
๐ **Exceptional Accuracy**: Achieves a **15.31% WER** and **2.86% CER** - representing significant improvements over smaller models:
| Model | WER | CER | Exact Match |
|-------|-----|-----|-------------|
| **Whisper Large v3 Turbo Armenian** | **15.31%** | **2.86%** | **42.73%** |
| Whisper Small Armenian v2 | 24.01% | 4.77% | 28.14% |
**Key Improvements:**
- **36% reduction** in Word Error Rate compared to the small model
- **40% reduction** in Character Error Rate
- **52% improvement** in Exact Match accuracy
- Superior performance while maintaining efficient inference speed
## Uses
### Direct Use
This model excels at transcribing Armenian speech to text with high accuracy, making it suitable for:
- **Production-grade** Armenian speech transcription systems
- Real-time Armenian voice interfaces with minimal errors
- Professional Armenian media content processing
- High-accuracy Armenian voice assistants and applications
- Academic and research applications in Armenian computational linguistics
### Downstream Use
The model can be integrated into enterprise and research applications such as:
- Professional Armenian voice assistants and chatbots
- High-quality subtitle generation for Armenian media
- Accessibility tools requiring high transcription accuracy
- Educational platforms for Armenian language learning
- Call center analytics and voice processing systems
### Out-of-Scope Use
This model should not be used for:
- Speech recognition in languages other than Armenian
- Speaker identification or verification tasks
- Audio classification beyond speech transcription
- Critical applications requiring 100% accuracy (medical/legal without human review)
## Bias, Risks, and Limitations
While this model achieves excellent performance, users should be aware of:
- **Domain specificity:** Performance may vary across different speaking styles and domains
- **Audio quality dependency:** Optimal performance requires reasonably clear audio input
- **Dialectal variations:** Performance may vary across different Armenian dialects
- **Computational requirements:** Larger model size requires more computational resources than smaller variants
### Recommendations
For optimal results:
- Test thoroughly on your specific use case and audio conditions
- Implement appropriate error handling and confidence thresholds
- Consider computational requirements when deploying at scale
- Monitor performance across different speaker demographics and accents
## How to Get Started with the Model
Use the code below to get started with the model:
```python
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
import torch
# Load the processor and model
processor = AutoProcessor.from_pretrained("Chillarmo/whisper-large-v3-turbo-armenian")
model = AutoModelForSpeechSeq2Seq.from_pretrained("Chillarmo/whisper-large-v3-turbo-armenian")
# Enable half precision for faster inference (optional)
model = model.half()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
def transcribe_armenian(audio_path):
"""
Transcribe Armenian audio file to text
Args:
audio_path (str): Path to audio file
Returns:
str: Transcribed text
"""
import librosa
# Load and process audio file
audio, sr = librosa.load(audio_path, sr=16000)
# Process the audio
inputs = processor(audio, sampling_rate=16000, return_tensors="pt")
inputs = inputs.to(device)
# Generate transcription
with torch.no_grad():
predicted_ids = model.generate(
inputs["input_features"],
max_new_tokens=448,
do_sample=False,
use_cache=True
)
# Decode the transcription
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
return transcription[0]
# Example usage
# transcription = transcribe_armenian("path/to/armenian_audio.wav")
# print(f"Transcription: {transcription}")
```
### Batch Processing Example
```python
def transcribe_batch(audio_files):
"""
Transcribe multiple audio files efficiently
Args:
audio_files (list): List of audio file paths
Returns:
list: List of transcriptions
"""
transcriptions = []
for audio_file in audio_files:
transcription = transcribe_armenian(audio_file)
transcriptions.append(transcription)
return transcriptions
# Example batch processing
# audio_files = ["audio1.wav", "audio2.wav", "audio3.wav"]
# results = transcribe_batch(audio_files)
```
## Training Details
### Training Data
The model was fine-tuned on the [Chillarmo/common_voice_20_armenian](https://huggingface.co/datasets/Chillarmo/common_voice_20_armenian) dataset, utilizing the same high-quality Armenian speech data that has proven effective for Armenian speech recognition tasks.
### Training Procedure
#### Training Hyperparameters
The following hyperparameters were used during training:
- **Training regime:** Mixed precision training with optimized settings for Large v3 Turbo
- **Epochs:** 2.65 (optimal convergence achieved)
- **Training runtime:** 48,521 seconds (approximately 13.5 hours)
- **Training samples per second:** 1.649
- **Training steps per second:** 0.103
- **Final training loss:** 0.106
- **Total training steps:** 5,000
#### Performance Metrics During Training
- **Final evaluation loss:** 0.069
- **Training efficiency:** Optimized for the Large v3 Turbo architecture
- **Convergence:** Achieved excellent performance within 2.65 epochs
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
The model was evaluated on a held-out test set from the Chillarmo/common_voice_20_armenian dataset using the same evaluation methodology as the baseline models for fair comparison.
#### Metrics
The model was evaluated using standard speech recognition metrics:
- **Word Error Rate (WER):** Percentage of words incorrectly transcribed
- **Character Error Rate (CER):** Percentage of characters incorrectly transcribed
- **Exact Match:** Percentage of utterances transcribed perfectly
### Results
The fine-tuned model achieved exceptional performance on the evaluation set:
| Metric | Value | Improvement vs Small Model |
|--------|-------|---------------------------|
| **Word Error Rate (WER)** | **15.31%** | **-36.2%** (24.01% โ 15.31%) |
| **Character Error Rate (CER)** | **2.86%** | **-40.0%** (4.77% โ 2.86%) |
| **Exact Match** | **42.73%** | **+51.8%** (28.14% โ 42.73%) |
| **Average Prediction Length** | 7.76 tokens | Consistent with ground truth |
| **Average Label Length** | 7.77 tokens | - |
| **Length Ratio** | 0.999 | Excellent length calibration |
#### Performance Analysis
The results demonstrate exceptional performance characteristics:
- **Superior accuracy:** Significant improvements across all metrics compared to smaller models
- **Length calibration:** Near-perfect length ratio (0.999) indicates excellent model calibration
- **Consistency:** High exact match rate (42.73%) shows the model frequently produces perfect transcriptions
- **Robustness:** Low character error rate (2.86%) indicates strong character-level understanding
## Technical Specifications
### Model Architecture and Objective
This model is based on the Whisper Large v3 Turbo architecture, featuring:
- **Encoder:** Advanced Transformer encoder processing mel-spectrogram features
- **Decoder:** Optimized Transformer decoder for efficient text generation
- **Architecture:** Enhanced Transformer sequence-to-sequence model
- **Model size:** Large v3 Turbo (optimized for efficiency)
- **Input:** 128-dimensional log mel-spectrograms
- **Output:** High-accuracy Armenian text transcriptions
- **Special features:** Turbo optimizations for faster inference while maintaining quality
### Compute Infrastructure
#### Hardware
Training was performed on the following hardware configuration:
- **Training duration:** ~13.5 hours for optimal convergence
- **Computational efficiency:** Optimized training pipeline for Large v3 Turbo architecture
- **Memory optimization:** Efficient memory usage during training and inference
#### Software
- **Framework:** Hugging Face Transformers (latest version)
- **Training library:** PyTorch with advanced optimization
- **Audio processing:** librosa, soundfile
- **Evaluation:** datasets, evaluate, jiwer
- **Optimization:** Mixed precision training for efficiency
## Deployment Considerations
### Hardware Requirements
**Minimum Requirements:**
- GPU: 8GB VRAM (for optimal performance)
- CPU: Modern multi-core processor
- RAM: 16GB system memory
**Recommended for Production:**
- GPU: 16GB+ VRAM for batch processing
- CPU: High-performance multi-core processor
- RAM: 32GB+ for large-scale deployment
### Performance Optimization Tips
1. **Use half precision** (`model.half()`) for faster inference
2. **Batch processing** for multiple audio files
3. **GPU acceleration** strongly recommended
4. **Caching** enabled for repeated inference tasks
## Citation
**BibTeX:**
```bibtex
@misc{movsesyan2025whisper-large-v3-turbo-armenian,
author = {Movsesyan, Movses},
title = {Whisper Large v3 Turbo Armenian},
year = {2025},
publisher = {Hugging Face},
url = {https://huggingface.co/Chillarmo/whisper-large-v3-turbo-armenian}
}
@article{radford2022robust,
title={Robust speech recognition via large-scale weak supervision},
author={Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya},
journal={International Conference on Machine Learning},
pages={28492--28518},
year={2023},
organization={PMLR}
}
```
**APA:**
Movsesyan, M. (2025). Whisper Large v3 Turbo Armenian. Hugging Face. https://huggingface.co/Chillarmo/whisper-large-v3-turbo-armenian
## Model Card Authors
This model card was created by Movses Movsesyan based on the fine-tuning results and comprehensive performance evaluation of the Whisper Large v3 Turbo Armenian model.
---
## Acknowledgments
Special thanks to the OpenAI team for the Whisper architecture and the Common Voice project contributors for providing high-quality Armenian speech data that made this research possible. |