BAAI
/

File size: 69,348 Bytes
627f346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5644dea
627f346
5644dea
627f346
 
 
 
 
 
 
 
 
 
 
5644dea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
627f346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5ce455
627f346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5ce455
627f346
 
a5ce455
627f346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5ce455
627f346
 
 
 
 
 
a5ce455
 
627f346
 
 
 
 
 
 
 
 
 
 
 
 
 
a5ce455
 
 
 
 
 
 
 
 
627f346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5ce455
 
 
 
 
627f346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3bf9ba
 
627f346
 
 
 
 
 
 
 
 
 
 
 
a5ce455
 
627f346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3bf9ba
 
627f346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5ce455
 
 
 
 
 
 
 
627f346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5ce455
 
 
627f346
a5ce455
627f346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5644dea
 
 
 
 
627f346
 
5644dea
627f346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
#    Copyright 2024 Hao Zhang
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.
from typing import List, Optional, Tuple, Union, Dict
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
import transformers
from transformers import AutoConfig, AutoModelForCausalLM, LlamaConfig, LlamaModel, LlamaForCausalLM
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.generation.utils import GenerateOutput
# from .llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
from .modeling_qwen2 import Qwen2Config, Qwen2Model, Qwen2ForCausalLM
# from transformers import Qwen2Config, Qwen2Model, Qwen2ForCausalLM
import pdb
import time
import random
random.seed(42)
import torch
from statistics import mean
import torch.nn.functional as F
import PIL
from decord import VideoReader, cpu
from .conversation import conv_templates, SeparatorStyle
from .constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_IMAGE_TOKEN
from .mm_utils import tokenizer_image_token, load_video, KeywordsStoppingCriteria, get_anyres_image_grid_shape
import math
import re
from .vision_tower_builder import build_vision_tower
from .vision_resampler_builder import build_vision_resampler
from .vision_projector_builder import build_vision_projector
from .utils import rank0_print
from .sae import SiglipAE
import numpy as np
import pdb
from abc import ABC, abstractmethod

class LlavaMetaModel:
    def __init__(self, config):
        super(LlavaMetaModel, self).__init__(config)

        if hasattr(config, "mm_vision_tower"):
            delay_load = getattr(config, "delay_load", False)
            self.vision_tower = build_vision_tower(config, delay_load=delay_load)
            self.vision_resampler = build_vision_resampler(config, vision_tower=self.vision_tower)
            self.mm_projector = build_vision_projector(config, vision_cfg=self.vision_tower.config)

            if "unpad" in getattr(config, "mm_patch_merge_type", ""):
                self.image_newline = nn.Parameter(torch.empty(config.hidden_size, dtype=self.dtype))
    
        self.hidden_size=config.hidden_size
        self.text_mlp=nn.Sequential(
            nn.Linear(config.hidden_size,config.hidden_size),
            nn.GELU(),
        )
        self.sae=SiglipAE()

    def get_vision_tower(self):
        vision_tower = getattr(self, "vision_tower", None)
        if type(vision_tower) is list:
            vision_tower = vision_tower[0]
        return vision_tower

    def initialize_vision_modules(self, model_args, fsdp=None):
        vision_tower = model_args.vision_tower
        mm_vision_select_layer = model_args.mm_vision_select_layer
        mm_vision_select_feature = model_args.mm_vision_select_feature
        pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
        mm_patch_merge_type = model_args.mm_patch_merge_type

        self.config.mm_vision_tower = vision_tower
        self.config.vision_tower_pretrained = getattr(model_args, "vision_tower_pretrained", "")

        if self.get_vision_tower() is None:
            vision_tower = build_vision_tower(model_args)
            vision_resampler = build_vision_resampler(model_args, vision_tower=vision_tower)
            for k, v in vision_resampler.config.items():
                setattr(self.config, k, v)

            if fsdp is not None and len(fsdp) > 0:
                self.vision_tower = [vision_tower]
                self.vision_resampler = [vision_resampler]
            else:
                self.vision_tower = vision_tower
                self.vision_resampler = vision_resampler
        else:
            if fsdp is not None and len(fsdp) > 0:
                vision_resampler = self.vision_resampler[0]
                vision_tower = self.vision_tower[0]
            else:
                vision_resampler = self.vision_resampler
                vision_tower = self.vision_tower
            vision_tower.load_model()

            # In case it is frozen by LoRA
            for p in self.vision_resampler.parameters():
                p.requires_grad = True

        self.config.use_mm_proj = True
        self.config.mm_projector_type = getattr(model_args, "mm_projector_type", "linear")
        self.config.mm_hidden_size = getattr(vision_resampler, "hidden_size", vision_tower.hidden_size)
        self.config.mm_vision_select_layer = mm_vision_select_layer
        self.config.mm_vision_select_feature = mm_vision_select_feature
        self.config.mm_patch_merge_type = mm_patch_merge_type
        
        self.sae=SiglipAE()
        self.sae.load_state_dict(torch.load('/share/LXRlxr0_0/code/videoxl2/videoxl2/longva/longva/model/encoder.pth'),strict=False)
        
        if getattr(self, "mm_projector", None) is None:
            self.mm_projector = build_vision_projector(self.config, vision_cfg=vision_tower.config)

            if "unpad" in mm_patch_merge_type:
                embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype))
                self.image_newline = nn.Parameter(torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std)
        else:
            # In case it is frozen by LoRA
            for p in self.mm_projector.parameters():
                p.requires_grad = True

        if pretrain_mm_mlp_adapter is not None:
            mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location="cpu")

            def get_w(weights, keyword):
                return {k.split(keyword + ".")[1]: v for k, v in weights.items() if keyword in k}

            incompatible_keys = self.mm_projector.load_state_dict(get_w(mm_projector_weights, "mm_projector"))
            rank0_print(f"Loaded mm projector weights from {pretrain_mm_mlp_adapter}. Incompatible keys: {incompatible_keys}")
            incompatible_keys = self.vision_resampler.load_state_dict(get_w(mm_projector_weights, "vision_resampler"), strict=False)
            rank0_print(f"Loaded vision resampler weights from {pretrain_mm_mlp_adapter}. Incompatible keys: {incompatible_keys}")
        
def unpad_image(tensor, original_size):
    """
    Unpads a PyTorch tensor of a padded and resized image.

    Args:
    tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
    original_size (tuple): The original size of the image (height, width).

    Returns:
    torch.Tensor: The unpadded image tensor.
    """
    original_width, original_height = original_size
    current_height, current_width = tensor.shape[1:]

    # Compute aspect ratios
    original_aspect_ratio = original_width / original_height
    current_aspect_ratio = current_width / current_height

    # Determine padding size and direction
    if original_aspect_ratio > current_aspect_ratio:
        # Padding was added to the height
        scale_factor = current_width / original_width
        new_height = int(original_height * scale_factor)
        padding = (current_height - new_height) // 2
        unpadded_tensor = tensor[:, padding : current_height - padding, :]
    else:
        # Padding was added to the width
        scale_factor = current_height / original_height
        new_width = int(original_width * scale_factor)
        padding = (current_width - new_width) // 2
        unpadded_tensor = tensor[:, :, padding : current_width - padding]

    return unpadded_tensor

class LlavaMetaForCausalLM(ABC):
    @abstractmethod
    def get_model(self):
        pass

    def get_vision_tower(self):
        return self.get_model().get_vision_tower()

    def get_2dPool(self, image_feature):
        height = width = self.get_vision_tower().num_patches_per_side
        num_frames, num_tokens, num_dim = image_feature.shape
        image_feature = image_feature.view(num_frames, height, width, -1)
        image_feature = image_feature.permute(0, 3, 1, 2).contiguous()
        # image_feature = nn.functional.max_pool2d(image_feature, self.config.mm_spatial_pool_stride)
        if self.config.mm_spatial_pool_mode == "average":
            image_feature = nn.functional.avg_pool2d(image_feature, self.config.mm_spatial_pool_stride)
        elif self.config.mm_spatial_pool_mode == "max":
            image_feature = nn.functional.max_pool2d(image_feature, self.config.mm_spatial_pool_stride)
        else:
            raise ValueError(f"Unexpected mm_spatial_pool_mode: {self.config.mm_spatial_pool_mode}")
        image_feature = image_feature.permute(0, 2, 3, 1)
        image_feature = image_feature.view(num_frames, -1, num_dim)
        return image_feature

    def encode_images(self, images):
        image_features = self.get_model().get_vision_tower()(images)
        #image_features = self.get_model().vision_resampler(image_features, images=images)
        image_features = self.get_model().mm_projector(image_features)
        image_features = self.get_model().vision_resampler(image_features, images=images)
        return image_features

    def add_image(self, image_features):
        return torch.repeat_interleave(image_features, repeats=4, dim=0)
    
    def add_video(self, video_features):
        # Current batch size
        current_batch_size = video_features.size(0)
        # Handle cases where the batch size is less than 4
        if current_batch_size < 4:
            last_feature = video_features[-1:]
            # Calculate how many times the last feature needs to be repeated
            num_repeats = 4 - current_batch_size
            repeated_features = last_feature.repeat(num_repeats, 1, 1, 1)
            # Concatenate original features with repeated last feature
            expanded_x = torch.cat([video_features, repeated_features], dim=0)
            return expanded_x

        # Handle cases where the batch size is 4 or greater, but not a multiple of 4
        if current_batch_size % 4 != 0:
            last_feature = video_features[-1:]
            # Calculate how many features are needed to reach the next multiple of 4
            padding_size = 4 - (current_batch_size % 4)
            repeated_features = last_feature.repeat(padding_size, 1, 1, 1)
            # Concatenate original features with repeated last feature
            expanded_x = torch.cat([video_features, repeated_features], dim=0)
            return expanded_x
        
        # If the batch size is already a multiple of 4, return as is
        return video_features
    def encode_multimodals(self, videos_or_images, video_idx_in_batch, split_sizes=None):
        if self.config.enable_chunk_prefill:
            chunk_size_for_vision_tower = self.config.prefill_config['chunk_size_for_vision_tower']
        else:
            chunk_size_for_vision_tower = 100000
        # pdb.set_trace()
        # Define the maximum batch size (1024 frames)
        max_batch_size = chunk_size_for_vision_tower
        # print(f'max_batch_size: {max_batch_size}')
        num_frames = videos_or_images.shape[0]
        # Initialize a list to store the features from each batch
        videos_or_images_features = []

        videos_or_images_features = torch.empty((num_frames, 729, 1152), device=self.get_model().device, dtype=self.get_model().dtype)
       
        # Split videos_or_images into smaller batches if num_frames > max_batch_size
        current_idx = 0
        if num_frames > max_batch_size:
            # Calculate the number of batches needed
            num_batches = (num_frames + max_batch_size - 1) // max_batch_size
            for i in range(num_batches):
                start_idx = i * max_batch_size
                end_idx = min((i + 1) * max_batch_size, num_frames)

                # Process each batch separately
                batch_videos_or_images = videos_or_images[start_idx:end_idx]
                batch_features = self.get_model().get_vision_tower()(batch_videos_or_images)
                # videos_or_images_features.append(batch_features)

                videos_or_images_features[current_idx:current_idx + batch_features.shape[0]] = batch_features
                # Update the current index for the next batch
                current_idx += batch_features.shape[0]
                # peak_memory_allocated = torch.cuda.max_memory_allocated()
                # print(f"vision encoder 显存峰值: {peak_memory_allocated / (1024**3):.2f} GB") # 转换为GB
            
            # Concatenate the features of all batches
            # videos_or_images_features = torch.cat(videos_or_images_features, dim=0)
        else:
            videos_or_images_features = self.get_model().get_vision_tower()(videos_or_images)

        per_videos_or_images_features = torch.split(videos_or_images_features, split_sizes, dim=0) 
        all_videos_or_images_features = []

        # peak_memory_allocated = torch.cuda.max_memory_allocated()
        # print(f"vision encoder 显存峰值: {peak_memory_allocated / (1024**3):.2f} GB") # 转换为GB
        del videos_or_images_features
        torch.cuda.empty_cache()

        chunk_size = chunk_size_for_vision_tower
        # print(f'chunk_size: {chunk_size}')
        all_feat_list = []
        for idx, feat in enumerate(per_videos_or_images_features):
            for i in range(0, feat.shape[0], chunk_size):
                batched_feat = feat[i:i+chunk_size] # chunk_size = 48, batched_feat.shape=[48, 729, 1152]
                batched_feat=self.interpolate(batched_feat) # 插值后 batched_feat.shape=[48, 1152, 24, 24]
                if idx in video_idx_in_batch:
                    batched_feat = self.add_video(batched_feat) # 第一纬度补充到4的倍数
                else:
                    batched_feat = self.add_image(batched_feat)

                bc,ch,h,w = batched_feat.shape
                batched_feat = batched_feat.view(bc//4,ch,4,h,w)

                batched_feat = self.get_model().sae(batched_feat).squeeze(2)
                batched_feat = batched_feat.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
                
                batched_feat = self.get_model().mm_projector(batched_feat)
                batched_feat = self.get_2dPool(batched_feat)
                all_feat_list.append(batched_feat)

        feat = torch.cat(all_feat_list, dim=0)
        # peak_memory_allocated = torch.cuda.max_memory_allocated()
        # print(f"sae 显存峰值: {peak_memory_allocated / (1024**3):.2f} GB") # 转换为GB

        del per_videos_or_images_features
        del all_feat_list
        torch.cuda.empty_cache()
        all_videos_or_images_features.append(feat)
        return all_videos_or_images_features
   
    def interpolate(self,image_features):
        b, num_tokens, dim = image_features.shape
        
        #print(str(image_features.shape)+' i\n')
        
        target_h = target_w = int(576**0.5)
        h = w = int(num_tokens**0.5)

        image_features = image_features.view(b, h, w, dim)
        image_features = image_features.permute(0, 3, 1, 2).contiguous()

        chunk_size = 24
        chunks = torch.split(image_features, chunk_size, dim=0)
        interpolated_chunks = []
        for chunk in chunks:
            interpolated_chunk = F.interpolate(
                chunk.to(torch.float32),
                size=(target_h, target_w),
                mode="bilinear",
                align_corners=False,
            ).to(chunk.dtype)
            interpolated_chunks.append(interpolated_chunk)
        image_features = torch.cat(interpolated_chunks, dim=0)
        del interpolated_chunks
        
        del chunks

        return image_features

    def prepare_inputs_labels_for_multimodal(self, input_ids, position_ids, attention_mask, past_key_values, labels, images, modalities=["image"], image_sizes=None,time_embedding=None):

        vision_tower = self.get_vision_tower()
        if vision_tower is None or images is None or input_ids.shape[1] == 1:
            return input_ids, position_ids, attention_mask, past_key_values, None, labels

        if type(images) is list or images.ndim == 5:
            if type(images) is list:
                images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images]

            video_idx_in_batch = []
            for _ in range(len(modalities)):
                if modalities[_] == "video":
                    video_idx_in_batch.append(_)

            images_list = []
            for image in images:
                if image.ndim == 4:
                    images_list.append(image)
                else:
                    images_list.append(image.unsqueeze(0))
            #print(len(images_list),images_list[0].shape)

            concat_images = torch.cat([image for image in images_list], dim=0)
            split_sizes = [image.shape[0] for image in images_list]

            image_features = self.encode_multimodals(concat_images, video_idx_in_batch, split_sizes)    #16,144,3584

            mm_patch_merge_type = getattr(self.config, "mm_patch_merge_type", "flat")
            image_aspect_ratio = getattr(self.config, "image_aspect_ratio", "square")

            visual_drop_score=[]
            new_image_features=[]
            
            if mm_patch_merge_type == "flat":
                
                if image_features[0].ndim>2:
                    image_features = [x.flatten(0, 1) for x in image_features]
            elif mm_patch_merge_type== "unires":
                #print('unires')
                for image_idx, image_feature in enumerate(image_features):
                    # rank0_print(f"Initial feature size : {image_feature.shape}")
                    if image_idx in video_idx_in_batch:  # video operations
                        #print(image_feature.shape)
                        image_feature = image_feature.flatten(0, 1)
                        
                    elif image_feature.shape[0] > 1:
                        # base image feature is never used in unires
                        base_image_feature = image_feature[0]
                        image_feature = image_feature[1:]

                        height = width = self.get_vision_tower().num_patches_per_side
                        assert height * width == base_image_feature.shape[0]

                        kernel_size = mm_patch_merge_type.split("avgpool")[-1].split("x")[-1]
                        kernel_size = 2
                        image_feature = image_feature.view(image_feature.shape[0], height, width, -1) # [4, 24, 24, 4096]
                        image_feature = image_feature.permute(0, 3, 1, 2).contiguous() # [4, 4096, 24, 24]
                        image_feature = nn.functional.avg_pool2d(image_feature,kernel_size) # [4, 4096, 12, 12]
                        image_feature = image_feature.flatten(2, 3) # [4, 4096, 144]
                        image_feature = image_feature.permute(0, 2, 1).contiguous() # [4, 144, 4096]
                        
                        #print(image_feature.shape)
                        image_feature = image_feature.flatten(0, 1)
                        
                    else:
                        
                        image_feature = image_feature[0]
                        
                    new_image_features.append(image_feature)
                
                image_features = new_image_features
                
            elif mm_patch_merge_type.startswith("spatial"):
                new_image_features = []
                for image_idx, image_feature in enumerate(image_features):
                    # FIXME: now assume the image is square, and split to 2x2 patches
                    # num_patches = h * w, where h = w = sqrt(num_patches)
                    # currently image_feature is a tensor of shape (4, num_patches, hidden_size)
                    # we want to first unflatten it to (2, 2, h, w, hidden_size)
                    if image_idx in video_idx_in_batch:  # video operations
                        if "unpad" in mm_patch_merge_type:
                            # image_feature = image_feature.permute(2, 0, 1).contiguous()
                            # image_feature =  torch.cat((image_feature, self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)), dim=-1)
                            # image_feature = image_feature.permute(1, 2, 0).contiguous()
                            image_feature = image_feature.flatten(0, 1)
                            image_feature = torch.cat((image_feature, self.model.image_newline[None].to(image_feature.device)), dim=0)

                    elif image_feature.shape[0] > 1:  # multi patches and multi images operations
                        base_image_feature = image_feature[0]
                        image_feature = image_feature[1:]
                        height = width = self.get_vision_tower().num_patches_per_side
                        assert height * width == base_image_feature.shape[0]

                        if "anyres_max" in image_aspect_ratio:
                            matched_anyres_max_num_patches = re.match(r"anyres_max_(\d+)", image_aspect_ratio)
                            if matched_anyres_max_num_patches:
                                max_num_patches = int(matched_anyres_max_num_patches.group(1))

                        if image_aspect_ratio == "anyres" or "anyres_max" in image_aspect_ratio:
                            if hasattr(self.get_vision_tower(), "image_size"):
                                vision_tower_image_size = self.get_vision_tower().image_size
                            else:
                                raise ValueError("vision_tower_image_size is not found in the vision tower.")
                            num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[image_idx], self.config.image_grid_pinpoints, vision_tower_image_size)
                            image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
                        else:
                            image_feature = image_feature.view(2, 2, height, width, -1)

                        if "maxpool2x2" in mm_patch_merge_type:
                            image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
                            image_feature = image_feature.flatten(1, 2).flatten(2, 3)
                            image_feature = nn.functional.max_pool2d(image_feature, 2)
                            image_feature = image_feature.flatten(1, 2).transpose(0, 1)
                        elif "unpad" in mm_patch_merge_type and "anyres_max" in image_aspect_ratio and matched_anyres_max_num_patches:
                            unit = image_feature.shape[2]
                            image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
                            image_feature = image_feature.flatten(1, 2).flatten(2, 3)
                            image_feature = unpad_image(image_feature, image_sizes[image_idx])
                            c, h, w = image_feature.shape
                            times = math.sqrt(h * w / (max_num_patches * unit**2))
                            if times > 1.1:
                                image_feature = image_feature[None]
                                image_feature = nn.functional.interpolate(image_feature, [int(h // times), int(w // times)], mode="bilinear")[0]
                            image_feature = torch.cat((image_feature, self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)), dim=-1)
                            image_feature = image_feature.flatten(1, 2).transpose(0, 1)
                        elif "unpad" in mm_patch_merge_type:
                            image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
                            image_feature = image_feature.flatten(1, 2).flatten(2, 3)
                            image_feature = unpad_image(image_feature, image_sizes[image_idx])
                            image_feature = torch.cat((image_feature, self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)), dim=-1)
                            image_feature = image_feature.flatten(1, 2).transpose(0, 1)
                        else:
                            image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
                            image_feature = image_feature.flatten(0, 3)
                        if "nobase" in mm_patch_merge_type:
                            pass
                        else:
                            image_feature = torch.cat((base_image_feature, image_feature), dim=0)
                    else:  # single image operations
                        image_feature = image_feature[0]
                        if "unpad" in mm_patch_merge_type:
                            image_feature = torch.cat((image_feature, self.model.image_newline[None]), dim=0)

                    new_image_features.append(image_feature)
                image_features = new_image_features
            else:
                raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}")
        else:
            error_message = """
            Something is wrong with the input shape. Most likely, you did not wrap the image or video input in a list:
            This is correct:
                model.generate(input_ids, images=[video_tensor],  modalities=["video"], **gen_kwargs)
                model.generate(input_ids, images=[image_tensor],  modalities=["image"], **gen_kwargs)
            This is wrong:
                model.generate(input_ids, images=video_tensor,  modalities=["video"], **gen_kwargs)
                model.generate(input_ids, images=image_tensor,  modalities=["image"], **gen_kwargs)
            """
            raise ValueError(error_message)

        #print(time_embedding[0].shape)
        #video_token_indices=[]
        for image_idx, image_feature in enumerate(image_features):
            if time_embedding[image_idx] is not None:
                mask = (time_embedding[image_idx] == 151654)
                indices = torch.nonzero(mask).squeeze()

                embed_token=self.get_model().embed_tokens(time_embedding[image_idx])
                embed_token[indices]=image_features[image_idx]
                
                #video_token_indices.append(indices)
                
                image_features[image_idx]=embed_token
    
        if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(self.config, "mm_use_im_start_end", False):
            raise NotImplementedError

        # Let's just add dummy tensors if they do not exist,
        # it is a headache to deal with None all the time.
        # But it is not ideal, and if you have a better idea,
        # please open an issue / submit a PR, thanks.
        _labels = labels
        _position_ids = position_ids
        _attention_mask = attention_mask
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
        else:
            attention_mask = attention_mask.bool()
        if position_ids is None:
            position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
        if labels is None:
            labels = torch.full_like(input_ids, IGNORE_INDEX)

        # remove the padding using attention_mask -- FIXME
        _input_ids = input_ids
        input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
        labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]

        new_input_embeds = []
        new_labels = []
        cur_image_idx = 0

        for batch_idx, cur_input_ids in enumerate(input_ids):
            num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
            #print(num_images)
            if num_images>=2:
                print(num_images,input_ids)
            if num_images == 0:
                cur_image_features = image_features[cur_image_idx]
                cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
                cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
                new_input_embeds.append(cur_input_embeds)
                new_labels.append(labels[batch_idx])
                cur_image_idx += 1
                continue

            image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
            #print(image_token_indices) #[-1, 14, 236]
            cur_input_ids_noim = []
            cur_labels = labels[batch_idx]
            
            # print(cur_input_ids)
            # print(labels[batch_idx])
            
            cur_labels_noim = []
            for i in range(len(image_token_indices) - 1):
                cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] + 1 : image_token_indices[i + 1]])
                cur_labels_noim.append(cur_labels[image_token_indices[i] + 1 : image_token_indices[i + 1]])
            split_sizes = [x.shape[0] for x in cur_labels_noim]
            
           #print(torch.cat(cur_input_ids_noim).shape,torch.cat(cur_input_ids_noim))
            
            cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
            cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
            cur_new_input_embeds = []
            cur_new_labels = []

            for i in range(num_images + 1):
                cur_new_input_embeds.append(cur_input_embeds_no_im[i])
                cur_new_labels.append(cur_labels_noim[i])
                if i < num_images:
                    ##############
                    cur_image_features = image_features[cur_image_idx]
                    cur_image_idx += 1
                    cur_new_input_embeds.append(cur_image_features)
                    cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))

            cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]

            # import pdb; pdb.set_trace()
            cur_new_input_embeds = torch.cat(cur_new_input_embeds)

            cur_new_labels = torch.cat(cur_new_labels)

            new_input_embeds.append(cur_new_input_embeds)
            new_labels.append(cur_new_labels)

        # Truncate sequences to max length as image embeddings can make the sequence longer
        tokenizer_model_max_length = getattr(self.config, "tokenizer_model_max_length", None)
        # NOTE: qmh 
        # new_input_embeds = [x[:tokenizer_model_max_length] for x, modality in zip(new_input_embeds, modalities)]
        # new_labels = [x[:tokenizer_model_max_length] for x, modality in zip(new_labels, modalities)]

        # TODO: Hard code for control loss spike
        # if tokenizer_model_max_length is not None:
        #     new_input_embeds = [x[:4096] if modality != "video" else x[:tokenizer_model_max_length] for x, modality in zip(new_input_embeds, modalities)]
        #     new_labels = [x[:4096] if modality != "video" else x[:tokenizer_model_max_length] for x, modality in zip(new_labels, modalities)]

        # Combine them
        max_len = max(x.shape[0] for x in new_input_embeds)
        batch_size = len(new_input_embeds)

        new_input_embeds_padded = []
        new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
        attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
        position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)

        for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
            cur_len = cur_new_embed.shape[0]
            if getattr(self.config, "tokenizer_padding_side", "right") == "left":
                new_input_embeds_padded.append(torch.cat((torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device), cur_new_embed), dim=0))
                if cur_len > 0:
                    new_labels_padded[i, -cur_len:] = cur_new_labels
                    attention_mask[i, -cur_len:] = True
                    position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
            else:
                new_input_embeds_padded.append(torch.cat((cur_new_embed, torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0))
                if cur_len > 0:
                    new_labels_padded[i, :cur_len] = cur_new_labels
                    attention_mask[i, :cur_len] = True
                    position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)

        new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)

        if _labels is None:
            new_labels = None
        else:
            new_labels = new_labels_padded

        if _attention_mask is None:
            attention_mask = None
        else:
            attention_mask = attention_mask.to(dtype=_attention_mask.dtype)

        if _position_ids is None:
            position_ids = None
        if getattr(self.config, "use_pos_skipping", False) and self.training:
            position_ids = torch.arange(new_input_embeds.size(1), device=new_input_embeds.device).unsqueeze(0).to(new_input_embeds.device)
            split_position = random.randint(0, new_input_embeds.size(1))
            left_add = random.randint(0, self.config.pos_skipping_range)
            right_add = random.randint(left_add, self.config.pos_skipping_range)
            position_ids[:, :split_position] += left_add
            position_ids[:, split_position:] += right_add
        # import pdb; pdb.set_trace()
        return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels

    def initialize_vision_tokenizer(self, model_args, tokenizer):
        if model_args.mm_use_im_patch_token:
            tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
            self.resize_token_embeddings(len(tokenizer))

        if model_args.mm_use_im_start_end:
            num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
            self.resize_token_embeddings(len(tokenizer))

            if num_new_tokens > 0:
                input_embeddings = self.get_input_embeddings().weight.data
                output_embeddings = self.get_output_embeddings().weight.data

                input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
                output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)

                input_embeddings[-num_new_tokens:] = input_embeddings_avg
                output_embeddings[-num_new_tokens:] = output_embeddings_avg

            if model_args.tune_mm_mlp_adapter:
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = True
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = False

            if model_args.pretrain_mm_mlp_adapter:
                mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location="cpu")
                embed_tokens_weight = mm_projector_weights["model.embed_tokens.weight"]
                assert num_new_tokens == 2
                if input_embeddings.shape == embed_tokens_weight.shape:
                    input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
                elif embed_tokens_weight.shape[0] == num_new_tokens:
                    input_embeddings[-num_new_tokens:] = embed_tokens_weight
                else:
                    raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")

        elif model_args.mm_use_im_patch_token:
            if model_args.tune_mm_mlp_adapter:
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = False
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = False


class LlavaQwenConfig(Qwen2Config):
    model_type = "llava_qwen"


class LlavaQwenModel(LlavaMetaModel, Qwen2Model):
    config_class = LlavaQwenConfig

    def __init__(self, config: Qwen2Config):
        super(LlavaQwenModel, self).__init__(config)


class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
    config_class = LlavaQwenConfig

    def __init__(self, config):
        # super(Qwen2ForCausalLM, self).__init__(config)
        Qwen2ForCausalLM.__init__(self, config)
        config.model_type = "llava_qwen"
        config.rope_scaling = None

        self.model = LlavaQwenModel(config)
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        # Initialize weights and apply final processing
        self.post_init()

    def get_model(self):
        return self.model

    def uniform_sampling(self, embeds, start_idx, end_idx, step):
        indices = torch.arange(start_idx, end_idx, step).to(device=embeds.device)
        return embeds.index_select(1, indices), indices
    def pooling_sampling(self, embeds, start_idx, end_idx, step, pool_type='avg'):
        selected = embeds[:, start_idx:end_idx, :]
        B, D, L = selected.shape
        kernel_size = step
        stride = step
        
        selected_transposed = selected.transpose(1, 2)  # shape: (1, 12, 4)

        if pool_type == 'avg_pool':
            pooled = F.avg_pool1d(selected_transposed, kernel_size=kernel_size, stride=stride)
        elif pool_type == 'max_pool':
            pooled = F.max_pool1d(selected_transposed, kernel_size=kernel_size, stride=stride)
        else:
            raise ValueError(f"Unsupported pooling type: {pool_type}")

        pooled = pooled.transpose(1, 2)  # shape: (1, 2, 12)
        return pooled, torch.arange(start_idx, start_idx + pooled.shape[1] * step, step).to(device=embeds.device)

    def process_block(self, block_embeds, current_past_key_values=None, bsz=1, device=None, position_ids=None, key_position_ids=None):
        if current_past_key_values is None:
            seq_len = block_embeds.size(1)
            position_ids = torch.arange(0, seq_len, device=device).expand(bsz, -1)
            attention_mask = torch.ones((bsz, seq_len), device=device, dtype=torch.long)
        else:
            seq_len = block_embeds.size(1)
            prefix_len = current_past_key_values[0][0].size(2)
            attention_mask = torch.ones((bsz, prefix_len + seq_len), device=device, dtype=torch.long)


        outputs = self.model(
            inputs_embeds=block_embeds,
            attention_mask=attention_mask,
            position_ids=position_ids,
            key_position_ids=key_position_ids,
            past_key_values=current_past_key_values,
            use_cache=True,
            return_dict=True,
        )
        return outputs.past_key_values

    def pooling_kvs(self, kvs, step):
        # kvs shape: (bsz, 4, seq_len, head_dim)
        kernel_size = step
        stride = step
        # kvs = kvs.transpose(2, 3)
        # pooled_kvs = F.avg_pool1d(kvs, kernel_size=kernel_size, stride=stride)
        kvs_permuted = kvs.permute(0, 1, 3, 2) # (batch_size, num_heads, feature_dim, sequence_length)
        N_flat = kvs_permuted.shape[0] * kvs_permuted.shape[1]
        C = kvs_permuted.shape[2]
        L = kvs_permuted.shape[3]
        kvs_for_pool = kvs_permuted.reshape(N_flat, C, L)
        pooled_kvs = F.avg_pool1d(kvs_for_pool, kernel_size=kernel_size, stride=stride)
        pooled_kvs_restored = pooled_kvs.view(kvs.shape[0], kvs.shape[1], pooled_kvs.shape[1], pooled_kvs.shape[2]).permute(0, 1, 3, 2)
        return pooled_kvs_restored


    def get_sparse_attention_mask(self, total_len, num_blocks, block_size, time_token_start_indices, time_token_end_indices, time_token_indices, visual_token_start_pos, visual_token_end_pos, attention_mask, inputs_embeds, prev_blocks_num=None):

        causal_mask = torch.tril(torch.ones((total_len, total_len), dtype=torch.bool)).unsqueeze(0).repeat(1, 1, 1)
        mask = torch.zeros(total_len, total_len, dtype=torch.bool)
        start = visual_token_start_pos

        record_block_start = []
        for i in range(num_blocks):
            next_time_token_pos = (i + 1)*block_size
            if next_time_token_pos >= len(time_token_start_indices):
                end = visual_token_end_pos
            else:
                end =  time_token_start_indices[ next_time_token_pos ]

            mask[start:end, start:end] = True  

            if len(record_block_start) >= prev_blocks_num:
                prev_start = record_block_start[-prev_blocks_num]
            else:
                prev_start = visual_token_start_pos

            mask[start:end, prev_start:start] = True   
            record_block_start.append(start)
            start = end

            
        mask[:, :visual_token_start_pos] = True
        mask[visual_token_end_pos:, :] = True        
     
        for idx in time_token_indices:
            mask[idx, :] = True   
            mask[:, idx] = True   

        causal_mask = torch.tril(torch.ones(total_len, total_len, dtype=torch.bool))
        final_mask = (mask & causal_mask).unsqueeze(0).unsqueeze(0).to(dtype=attention_mask.dtype, device=attention_mask.device)

        num_allowed = final_mask.sum().item()
        upper_triangle_num = total_len * (total_len + 1) // 2
        ratio = num_allowed / upper_triangle_num
        
        invert_mask = 1.0 - final_mask
        final_mask = ((1.0 - final_mask) * -1e9).to(dtype=inputs_embeds.dtype)
        return final_mask, ratio


    def cat_history_kvs(self, prefix_kvs, kvs_part2, kvs_part3):
        prefix_kvs = [[kvs] for kvs in prefix_kvs]
        cat_kvs = []
        for prefix_kvs_this_layer, kvs_part2_this_layer, kvs_part3_this_layer in zip(prefix_kvs, kvs_part2, kvs_part3):
            prefix_key_this_layer = [tmp[0] for tmp in prefix_kvs_this_layer]
            prefix_val_this_layer = [tmp[1] for tmp in prefix_kvs_this_layer]

            key_part2_this_layer = [tmp[0] for tmp in kvs_part2_this_layer]
            val_part2_this_layer = [tmp[1] for tmp in kvs_part2_this_layer]

            key_part3_this_layer = [tmp[0] for tmp in kvs_part3_this_layer]
            val_part3_this_layer = [tmp[1] for tmp in kvs_part3_this_layer]

            key_this_layer = torch.cat(prefix_key_this_layer + key_part2_this_layer + key_part3_this_layer, dim=-2)
            val_this_layer = torch.cat(prefix_val_this_layer + val_part2_this_layer + val_part3_this_layer, dim=-2)

            cat_kvs.append((key_this_layer, val_this_layer))
        return cat_kvs

    def forward_streaming(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        key_position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        dpo_forward: Optional[bool] = False,
        cache_position=None,
        visual_token_start_pos=None,
        visual_token_end_pos=None,
        time_token_start_indices=None,
        frames_num=None,
        time_token_indices=None,
        time_token_end_indices=None,
        block_size_chosed=None,
        prev_blocks_num=None,
        offload: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        
        block_size = block_size_chosed 
        visual_token_start_pos = visual_token_start_pos
        visual_token_end_pos = visual_token_end_pos
        visual_len = visual_token_end_pos - visual_token_start_pos
        num_blocks = (frames_num  + block_size * 4 - 1) // (block_size * 4)
        
        # streaming inps
        blocks_positions = [[(0, 0, visual_token_start_pos)]]
        frames_groups = [(0, visual_token_start_pos)]
        for idx, (time_start, time_end) in enumerate(zip(time_token_start_indices, time_token_end_indices)):
            if idx + 1 < len(time_token_start_indices):
                frames_group_end = time_token_start_indices[idx + 1]
            else:
                frames_group_end = visual_token_end_pos
            frames_groups.append(
                (time_start, time_end, frames_group_end)
            )

        single_block = []
        for group in frames_groups[1:]: 
            single_block.append(group)
            if len(single_block) == block_size:
                blocks_positions.append(single_block)
                single_block = []
        if len(single_block) != 0:
           blocks_positions.append(single_block)
        num_blocks = len(blocks_positions)

        start = time.time()
        record_prefill_time = 0

        full_inputs_embeds = inputs_embeds 
        bsz, total_len, embed_dim = full_inputs_embeds.size()
        device = full_inputs_embeds.device

        prefix_embeds = full_inputs_embeds[:, :visual_token_start_pos, :]
        visual_embeds = full_inputs_embeds[:, visual_token_start_pos:visual_token_end_pos, :]
        suffix_embeds = full_inputs_embeds[:, visual_token_end_pos:, :]
        num_visual_tokens = visual_embeds.size(1)

        all_past_key_values = [[] for _ in range(len(self.model.layers))] 
        prefix_past_key_values = []  

        # torch.cuda.reset_peak_memory_stats()
        
        if prefix_embeds.size(1) > 0:
            pkv = self.process_block(prefix_embeds, bsz=bsz, device=device)
            for i in range(len(pkv)):
                all_past_key_values[i].append(pkv[i])
                prefix_past_key_values.append(pkv[i])

        prev_blocks = blocks_positions[1:1+prev_blocks_num]
        prev_the_first_block = prev_blocks[0]
        prev_b_start = prev_the_first_block[0][0]
        prev_the_last_block = prev_blocks[-1]
        prev_b_end = prev_the_last_block[-1][-1]

        block_streaming_past_key_values = prefix_past_key_values

        query_position_ids = torch.arange(prev_b_start, prev_b_end, dtype=torch.long, device=device)
        past_key_position_ids = torch.arange(0, block_streaming_past_key_values[0][0].size(2), dtype=torch.long, device=device)
        key_position_ids = torch.cat([past_key_position_ids, query_position_ids], dim=0)

        visual_embeds_this_block = full_inputs_embeds[:,prev_b_start:prev_b_end,:]
        pkv = self.process_block(visual_embeds_this_block, current_past_key_values=block_streaming_past_key_values, bsz=bsz, device=device, position_ids=query_position_ids.unsqueeze(0), key_position_ids=key_position_ids.unsqueeze(0))

        for i in range(len(pkv)):
            for block in prev_blocks:
                block_start, _, _ = block[0]
                _, _, block_end = block[-1]
                all_past_key_values[i].append( (pkv[i][0][:,:,block_start:block_end], pkv[i][1][:,:,block_start:block_end]) )

        block_streaming_past_key_values_part1 = prefix_past_key_values
        position_ids_part1 = torch.arange(0, prefix_past_key_values[0][0].size(2), dtype=torch.long, device=device)
        block_streaming_past_key_values_part2 = [[] for _ in range(len(self.model.layers))]  
        position_ids_part2 = torch.tensor([], dtype=torch.long, device=device)
        block_streaming_past_key_values_part3=None
        position_ids_part3 = None
        
        query_position_ids = None
        for idx, single_block in enumerate(blocks_positions[:]):
            
            if idx == 0 or idx <= prev_blocks_num:
                continue
            
            b_start, _, _ = single_block[0]
            _, _, b_end = single_block[-1]
            visual_embeds_this_block = full_inputs_embeds[:,b_start:b_end,:]
            prev_blocks = blocks_positions[max(idx - prev_blocks_num, 1):idx]
            prev_the_first_block = prev_blocks[0]
            prev_b_start = prev_the_first_block[0][0]
            
            this_block_length = b_end - prev_b_start
            prev_block_length = b_start - prev_b_start
            true_block_length = b_end - b_start

            block_streaming_past_key_values_part3 = [tmp[-prev_blocks_num:] for tmp in all_past_key_values]

            if offload:
                block_streaming_past_key_values_part3 = [
                    [
                        (t[0].to(device=device), t[1].to(device=device))
                        for t in sublist
                    ]
                    for sublist in block_streaming_past_key_values_part3
                ]

            block_streaming_past_key_values = self.cat_history_kvs(block_streaming_past_key_values_part1, block_streaming_past_key_values_part2, block_streaming_past_key_values_part3)

            query_position_ids = torch.arange(b_start, b_end, dtype=torch.long, device=device)
            position_ids_part3 = torch.arange(prev_b_start, b_start, dtype=torch.long, device=device)
            key_position_ids = torch.cat([position_ids_part1, position_ids_part2, position_ids_part3, query_position_ids], dim=0)

            start_1 = time.time() 
            pkv = self.process_block(visual_embeds_this_block, current_past_key_values=block_streaming_past_key_values, bsz=bsz, device=device, position_ids=query_position_ids.unsqueeze(0), key_position_ids=key_position_ids.unsqueeze(0))
            end_1 = time.time()

            record_prefill_time += end_1-start_1

            for i in range(len(pkv)):
                length_before_chunk = block_streaming_past_key_values[i][0].size(2)
                key_this_block, val_this_block = pkv[i]
                key_this_block = key_this_block[:,:,length_before_chunk:,:]
                val_this_block = val_this_block[:,:,length_before_chunk:,:]
                
                if offload:
                    all_past_key_values[i].append( (key_this_block.to('cpu'), val_this_block.to('cpu')) )
                else:
                    all_past_key_values[i].append( (key_this_block, val_this_block) )

                time_keys_list = []
                time_vals_list = []

                extract_timestamps_position_ids_list = []
                for group in prev_the_first_block:
                    time_start, time_end, _ = group
                    extract_timestamps_position_ids_list.append(torch.arange(time_start, time_end, dtype=torch.long, device=device))

                    time_start = time_start - prev_b_start
                    time_end = time_end - prev_b_start

                    time_keys_list.append(block_streaming_past_key_values_part3[i][0][0][:,:,time_start:time_end,:])
                    time_vals_list.append(block_streaming_past_key_values_part3[i][0][1][:,:,time_start:time_end,:])
                    
                time_keys = torch.cat(time_keys_list, dim=2)
                time_vals = torch.cat(time_vals_list, dim=2)

                block_streaming_past_key_values_part2[i].append( (time_keys, time_vals) )

                if i == 0: 
                    position_ids_part2 = torch.cat([position_ids_part2] + extract_timestamps_position_ids_list, dim=0)


        merged_pkv = []
        for layer_pkvs in all_past_key_values:
            if not layer_pkvs:
                continue
            keys = torch.cat([pkv[0].to(device=device) for pkv in layer_pkvs], dim=2)  # dim=2 是 sequence 维度
            values = torch.cat([pkv[1].to(device=device) for pkv in layer_pkvs], dim=2)
            merged_pkv.append((keys, values))

        # peak_memory_allocated = torch.cuda.max_memory_allocated()
        # print(f"prefill 显存峰值: {peak_memory_allocated / (1024**3):.2f} GB") # 转换为GB
    
        pkv = merged_pkv
        del block_streaming_past_key_values
        del all_past_key_values
        del block_streaming_past_key_values_part1
        del block_streaming_past_key_values_part2
        del block_streaming_past_key_values_part3
        torch.cuda.empty_cache()

        # TODO: bi-decoding acceleration
        mixed_prefill_past_key_values = pkv
        prefill_len = visual_token_end_pos

        # torch.cuda.reset_peak_memory_stats()
        # Process suffix
        if suffix_embeds.size(1) > 0:
            seq_len = suffix_embeds.size(1)
            total_len = prefill_len + seq_len
            position_ids = torch.arange(prefill_len, total_len, device=device, dtype=torch.long).expand(bsz, -1)
            key_position_ids = torch.arange(0, total_len, device=device, dtype=torch.long).expand(bsz, -1)
            attention_mask = torch.ones((bsz, total_len), device=device, dtype=torch.long)

            outputs = super().forward(
                inputs_embeds=suffix_embeds,
                attention_mask=attention_mask,
                position_ids=position_ids,
                key_position_ids=key_position_ids,
                past_key_values=mixed_prefill_past_key_values,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                use_cache=True,
                return_dict=return_dict,
                # blocks_positions=None,
            )
            # peak_memory_allocated = torch.cuda.max_memory_allocated()
            # print(f"decoding 显存峰值: {peak_memory_allocated / (1024**3):.2f} GB") # 转换为GB
            del mixed_prefill_past_key_values
            torch.cuda.empty_cache()

        return outputs
    def forward_mask(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        dpo_forward: Optional[bool] = False,
        cache_position=None,
        visual_token_start_pos=None,
        visual_token_end_pos=None,
        time_token_start_indices=None,
        time_token_end_indices=None,
        frames_num=None,
        time_token_indices=None,
        prev_blocks_num=None,
        block_size_chosed=None
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        bsz, total_len, embed_dim = inputs_embeds.size()
        visual_token_start_pos = visual_token_start_pos
        visual_token_end_pos = visual_token_end_pos
        visual_len = visual_token_end_pos - visual_token_start_pos
        
        block_size_list = [2,4,8,16,32]
        best_block_size = None
        min_diff = float('inf')
       
        block_size = block_size_chosed
        num_blocks = (frames_num  + block_size * 4 - 1) // (block_size * 4)
        final_mask, ratio = self.get_sparse_attention_mask(total_len, num_blocks, block_size, time_token_start_indices, time_token_end_indices, time_token_indices, visual_token_start_pos, visual_token_end_pos, attention_mask, inputs_embeds, prev_blocks_num)

        # print(f'frames:{frames_num}, block_num:{num_blocks}, bsz:{block_size}, prev_blocks_num:{prev_blocks_num}, ratio:{ratio}') 

        return super().forward(
            input_ids=input_ids,
            attention_mask=final_mask, # final_mask
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            labels=labels,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        key_position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        images: Optional[torch.FloatTensor] = None,
        image_sizes: Optional[List[List[int]]] = None,
        return_dict: Optional[bool] = None,
        modalities: Optional[List[str]] = ["image"],
        dpo_forward: Optional[bool] = False,
        cache_position=None,
        time_embedding=None,
        visual_token_start_pos=None,
        visual_token_end_pos=None,
        time_token_start_indices=None,
        frames_num=None,
        time_token_indices=None,
        time_token_end_indices=None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        
        if input_ids is not None and input_ids.size(1) == 1:
            past_key_len = past_key_values[0][0].size(-2)
            key_position_ids = torch.arange(0, past_key_len+1, device=position_ids.device,dtype=torch.long).expand(1, -1)
            if position_ids[0][0] != past_key_len:
                position_ids = torch.tensor([[past_key_len]]).to(device=position_ids.device, dtype=position_ids.dtype)
                key_position_ids = torch.arange(0, past_key_len+1, device=position_ids.device,dtype=torch.long).expand(1, -1)

            return super().forward(
                input_ids=input_ids,
                attention_mask=attention_mask,
                position_ids=position_ids,
                key_position_ids=key_position_ids,
                past_key_values=past_key_values,
                inputs_embeds=inputs_embeds,
                labels=labels,
                use_cache=use_cache,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )

        if inputs_embeds is None:
            (input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels) = self.prepare_inputs_labels_for_multimodal(input_ids, position_ids, attention_mask, past_key_values, labels, images, modalities, image_sizes, time_embedding)

        if self.config.enable_chunk_prefill:

            prefill_mode = self.config.prefill_config['chunk_prefill_mode']
            chunk_size = self.config.prefill_config['chunk_size']
            step_size = self.config.prefill_config['step_size']
            offload = self.config.prefill_config['offload']
          
            if prefill_mode=='streaming':
                return self.forward_streaming(
                    input_ids=input_ids,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    key_position_ids=key_position_ids,
                    past_key_values=past_key_values,
                    inputs_embeds=inputs_embeds,
                    labels=labels,
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                    output_hidden_states=output_hidden_states,
                    return_dict=return_dict,
                    cache_position=cache_position,
                    visual_token_start_pos=visual_token_start_pos,
                    visual_token_end_pos=visual_token_end_pos,
                    time_token_start_indices=time_token_start_indices,
                    frames_num=frames_num,
                    time_token_indices=time_token_indices,
                    time_token_end_indices=time_token_end_indices,
                    block_size_chosed=chunk_size,
                    prev_blocks_num=chunk_size - step_size,
                    offload=offload,
                )
            elif prefill_mode=='mask':
                return self.forward_mask(
                    input_ids=input_ids,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    past_key_values=past_key_values,
                    inputs_embeds=inputs_embeds,
                    labels=labels,
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                    output_hidden_states=output_hidden_states,
                    return_dict=return_dict,
                    cache_position=cache_position,
                    visual_token_start_pos=visual_token_start_pos,
                    visual_token_end_pos=visual_token_end_pos,
                    time_token_start_indices=time_token_start_indices,
                    frames_num=frames_num,
                    time_token_indices=time_token_indices,
                    time_token_end_indices=time_token_end_indices,
                    block_size_chosed=block_size_chosed,
                    prev_blocks_num=prev_blocks_num,
                )
        else:
            return super().forward(
                input_ids=input_ids,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_values=past_key_values,
                inputs_embeds=inputs_embeds,
                labels=labels,
                use_cache=use_cache,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )

        
    @torch.no_grad()
    def generate(
        self,
        inputs: Optional[torch.Tensor] = None,
        images: Optional[torch.Tensor] = None,
        image_sizes: Optional[torch.Tensor] = None,
        modalities: Optional[List[str]] = ["image"],
        time_embedding=None,
        **kwargs,
    ) -> Union[GenerateOutput, torch.LongTensor]:

        position_ids = kwargs.pop("position_ids", None)
        attention_mask = kwargs.pop("attention_mask", None)

        if "inputs_embeds" in kwargs:
            raise NotImplementedError("`inputs_embeds` is not supported")

        if images is not None and images[0].size(0) > 0:
            IMAGE_TOKEN_INDEX = -200
            TOKEN_PERFRAME = 36
            frames_num = images[0].size(0)
            visual_token_start_pos = (inputs == IMAGE_TOKEN_INDEX).nonzero(as_tuple=True)[1].item()
            num_tokens = time_embedding[0].size(0)
            visual_token_end_pos = visual_token_start_pos + num_tokens
            kwargs['visual_token_start_pos'] = visual_token_start_pos
            kwargs['visual_token_end_pos'] = visual_token_end_pos
            # time_token_start_indices = (time_embedding[0] == 1462).nonzero(as_tuple=True)
            time_token_start_indices = (time_embedding[0] == 1462).nonzero(as_tuple=True)[0].cpu().tolist()
            kwargs['time_token_start_indices'] = [idx + visual_token_start_pos for idx in time_token_start_indices]
            # kwargs['time_token_start_indices'] = time_token_start_indices + visual_token_start_pos
            kwargs['frames_num'] = frames_num
            time_token_indices = (time_embedding[0] != 151654).nonzero(as_tuple=True)[0].cpu().tolist()
            kwargs['time_token_indices'] = [idx + visual_token_start_pos for idx in time_token_indices]
            time_token_end_indices = (time_embedding[0] == 25).nonzero(as_tuple=True)[0].cpu().tolist()
            kwargs['time_token_end_indices'] = [idx + visual_token_start_pos + 1 for idx in time_token_end_indices]
            # kwargs['time_token_end_indices'] = time_token_end_indices + visual_token_start_pos

        #print(images[0].shape)
        if images is not None:
            (inputs, position_ids, attention_mask, _, inputs_embeds, _) = self.prepare_inputs_labels_for_multimodal(inputs, position_ids, attention_mask, None, None, images, modalities, image_sizes=image_sizes,time_embedding=time_embedding)
        
        else:
            inputs_embeds = self.get_model().embed_tokens(inputs)
        
        #print(inputs_embeds.shape)
        return super().generate(position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, **kwargs)

    @torch.no_grad()
    def chat(self,
        video_path,
        tokenizer,
        user_prompt,
        chat_history=None,
        return_history=True,
        max_num_frames=512,
        sample_fps=1,
        max_sample_fps=4,
        generation_config={}):

        # prepare text input
        conv = conv_templates["qwen_1_5"].copy()
        if chat_history is None or len(chat_history) == 0:
            user_prompt = f'{DEFAULT_IMAGE_TOKEN}\n{user_prompt}'
        else:
            assert DEFAULT_IMAGE_TOKEN in chat_history[0]['content'], chat_history
            for msg in chat_history:
                conv.append_message(msg['role'], msg['content'])
        
        conv.append_message(conv.roles[0], user_prompt)
        conv.append_message(conv.roles[1], None)
        prompt = conv.get_prompt()
        input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(self.model.device)

        stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
        keywords = [stop_str]
        stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
        generation_config["stopping_criteria"] = [stopping_criteria]

        # prepare video input
        frames, timestamps = load_video(video_path, max_num_frames, fps=sample_fps, max_fps=max_sample_fps)
        print(f'video has loaded, extract {len(frames)} frames.')

        time_stamps=[]
        token_frames_sum=(len(timestamps)+3)//4
        compress_frame = timestamps[::4]
        time_embedding = []
        for time in compress_frame:
            item = f"Time {time}s:"
            time_embedding.append(tokenizer(item).input_ids)
            time_embedding.append([151654]*144)

        time_embedding = [item for sublist in time_embedding for item in sublist]
        time_embedding = torch.tensor(time_embedding, dtype=torch.long).to(self.model.device)
        time_stamps.append(time_embedding)

        video_tensor = self.get_vision_tower().image_processor.preprocess(frames, return_tensors="pt")["pixel_values"].to(self.model.device, dtype=torch.float16)
        
        with torch.inference_mode():
            output_ids = self.generate(input_ids, images=[video_tensor],time_embedding=time_stamps, modalities=["video"], **generation_config)

        outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
        
        if chat_history is None:
            chat_history = []

        chat_history.append({"role":conv.roles[0], "content":user_prompt})
        chat_history.append({"role":conv.roles[1], "content":outputs})
        if return_history:
            return outputs, chat_history
        else:
            return outputs

    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
        images = kwargs.pop("images", None)
        image_sizes = kwargs.pop("image_sizes", None)
        visual_token_start_pos = kwargs.get("visual_token_start_pos", None)
        visual_token_end_pos = kwargs.get("visual_token_end_pos", None)
        time_token_start_indices = kwargs.get("time_token_start_indices", None)
        frames_num = kwargs.get("frames_num", None)
        time_token_indices = kwargs.get("time_token_indices", None)
        time_token_end_indices = kwargs.get("time_token_end_indices", None)

        inputs = super().prepare_inputs_for_generation(input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs)

        inputs["visual_token_start_pos"] = visual_token_start_pos
        inputs["visual_token_end_pos"] = visual_token_end_pos
        inputs["time_token_start_indices"] = time_token_start_indices
        inputs["frames_num"] = frames_num
        inputs["time_token_indices"] = time_token_indices
        inputs["time_token_end_indices"] = time_token_end_indices

        if images is not None:
            inputs["images"] = images
        if image_sizes is not None:
            inputs["image_sizes"] = image_sizes
        return inputs


AutoConfig.register("llava_qwen", LlavaQwenConfig)
AutoModelForCausalLM.register(LlavaQwenConfig, LlavaQwenConfig)