--- library_name: pytorch pipeline_tag: video-to-video tags: - video-frame-interpolation - rife - optical-flow - frame-interpolation license: apache-2.0 task_categories: - vision - video-processing --- # WMS-RIFE v3 — Fine-tuned for WMS Satellite Sequences ## [Paper (ECCV2022)](https://arxiv.org/abs/2011.06294) | [Colab Demo](https://colab.research.google.com/github/hzwer/ECCV2022-RIFE/blob/main/Colab_demo.ipynb) | [Tutorial](https://www.youtube.com/watch?v=gf_on-dbwyU) ## Introduction This repo provides a fine-tuned version of **RIFE v3 (HDv3)** adapted for **WMS satellite imagery (2k–5k)**. Our model is optimized for smooth temporal interpolation of clouds, land/sea surfaces, and atmospheric patterns. * Base architecture: [RIFE (ECCV 2022)](https://arxiv.org/abs/2011.06294) * Training improvements: L1 + motion-weighted Charbonnier + (1-SSIM) + flow smoothness * Domain: remote sensing imagery (multi-sensor, 2k–5k resolution) * Performance: runs in real-time on RTX-class GPUs --- ## Results | Model | PSNR ↑ | SSIM ↑ | | -------------------- | --------- | ---------- | | Baseline (HDv3) | 32.57 | 0.8867 | | Fine-tuned (L1 only) | 34.10 | 0.8974 | | Fine-tuned (Custom) | **34.42** | **0.8991** | *N = ~5.3k validation triplets from WMS sensors.* Visual inspection confirms improved temporal stability and sharper cloud edges. --- ## Quick Start ### Installation ```bash git clone https://huggingface.co/Anson-Saju-George/wms-rifev3 cd wms-rifev3 pip install -r requirements.txt ``` ### Inference (pair of images) ```bash python demo_infer_pair.py --img0 frame_000.png --img1 frame_001.png ``` This will output `interp_000_001.png`. ### Inference (video) ```bash python finetune_infer_wms_sequence.py --video sample.mp4 --exp 1 ``` Generates `sample_2X.mp4`. --- ## Training / Evaluation * **Train:** ```bash python finetune_custom_loss_train.py ``` * **Eval:** ```bash python finetune_eval_wms.py ``` --- ## Applications * Satellite nowcasting & forecasting previews * Meteorology (cloud motion, precipitation fronts) * Ocean/atmosphere flow visualization * Geophysics time-lapse smoothing * Web maps & GIS visualization overlays --- ## Datasets We trained on **curated WMS imagery** (2k–5k resolution). Due to license restrictions, raw datasets are not redistributed. Please build from your own WMS feeds. --- ## Citation If you use this model, please cite the base RIFE paper: ```bibtex @inproceedings{huang2022rife, title={Real-Time Intermediate Flow Estimation for Video Frame Interpolation}, author={Huang, Zhewei and Zhang, Tianyuan and Heng, Wen and Shi, Boxin and Zhou, Shuchang}, booktitle={European Conference on Computer Vision (ECCV)}, year={2022} } ``` --- ## License Apache-2.0 (same as original RIFE). Please also respect the license of any datasets you use. ---